Qualitative properties for a fourth-order rational difference equation ✩

Abstract In this paper, we use a method different from the known literature to investigate the qualitative properties of the following fourth-order rational difference equation: x n + 1 = x n x n − 1 x n − 3 + x n + x n − 1 + x n − 3 + a x n x n − 1 + x n x n − 3 + x n − 1 x n − 3 + 1 + a , n = 0 , 1 , 2 , … , where a ∈ [ 0 , ∞ ) and the initial values x −3 , x −2 , x −1 , x 0 ∈ ( 0 , ∞ ) . The successive lengths of positive and negative semicycles of nontrivial solutions of the above equation is found to periodically occur, that is, … , 3 + , 2 − , 1 + , 1 − , 3 + , 2 − , 1 + , 1 − , 3 + , 2 − , 1 + , 1 − , 3 + , 2 − , 1 + , 1 − , … , or, … , 2 + , 1 − , 1 + , 3 − , 2 + , 1 − , 1 + , 3 − , 2 + , 1 − , 1 + , 3 − , 2 + , 1 − , 1 + , 3 − , 2 + , 1 − , 1 + , 3 − , … . By using the rule, the positive equilibrium point of the equation is verified to be globally asymptotically stable.

[1]  Liao Xianyi,et al.  A conjecture by G. Ladas , 1998 .

[2]  S. Stević More on a rational recurrence relation. , 2004 .

[3]  Ravi P. Agarwal,et al.  Difference equations and inequalities , 1992 .

[4]  Deming Zhu,et al.  Global asymptotic stability of a nonlinear recursive sequence , 2004, Appl. Math. Lett..

[5]  Deming Zhu,et al.  Two rational recursive sequences , 2004 .

[6]  Tim Nesemann Positive nonlinear difference equations: some results and applications , 2001 .

[7]  V. Kocić,et al.  Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , 1993 .

[8]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[9]  Deming Zhu,et al.  Global asymptotic stability for a nonlinear delay difference equation , 2002 .

[10]  L. F. Martins,et al.  The dynamics of χn+1=α+βχnA+Bχn+Cxn-1 facts and conjectures , 2003 .

[11]  Liao Xianyi,et al.  Periodicity and strict oscillation for generalized lyness equations , 2000 .

[12]  X. Li,et al.  Global Asymptotic Stability in a Rational Equation , 2003 .

[13]  G. Ladas,et al.  On a Class of Difference Equations with Strong Negative Feedback , 1999 .

[14]  Liao Xianyi Boundedness and persistence and global asymptotic stability for a class of delay difference equations with higher order , 2002 .

[15]  Deming Zhu,et al.  Global asymptotic stability for two recursive difference equations , 2004, Appl. Math. Comput..

[16]  S. Stevo,et al.  The recursive sequence xn+1 = g(xn, xn-1)/(A + xn) , 2002, Appl. Math. Lett..