Adaptive mesh finite-volume calculation of 2D lid-cavity corner vortices
暂无分享,去创建一个
José M. C. Pereira | José M. C. Pereira | José C. F. Pereira | Duarte M. S. Albuquerque | João P. P. Magalhães | João P. P. Magalhães
[1] M. D. Deshpande,et al. FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .
[2] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[3] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[4] Fue-Sang Lien,et al. A Cartesian Grid Method with Transient Anisotropic Adaptation , 2002 .
[5] H. K. Moffatt. Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.
[6] Karl Gustafson,et al. Vortex dynamics of cavity flows , 1986 .
[7] A. Veldman,et al. Symmetry-preserving discretization of turbulent flow , 2003 .
[8] P. N. Shankar,et al. Moffatt eddies in the cone , 2005, Journal of Fluid Mechanics.
[9] J. Pereira,et al. A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .
[10] A. D. Gosman,et al. AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES , 2000 .
[11] J. Ferziger,et al. An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .
[12] Brian Mirtich,et al. Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.
[13] S. Dennis,et al. Viscous eddies near a 90° and a 45° corner in flow through a curved tube of triangular cross-section , 1976, Journal of Fluid Mechanics.
[14] O. Burggraf. Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.
[15] C. J. Heaton,et al. On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies , 2008 .
[16] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[17] S. Muzaferija,et al. Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .
[18] Karl Gustafson,et al. Cavity flow dynamics at higher reynolds number and higher aspect ratio , 1987 .
[19] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[20] K. C. Hung,et al. Vortex structure of steady flow in a rectangular cavity , 2006 .
[21] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[22] C. Dalton,et al. Numerical study of viscous flow in a cavity , 1973 .
[23] P. Moin,et al. A numerical method for large-eddy simulation in complex geometries , 2004 .
[24] S. Benhamadouche,et al. Colocated finite – volume schemes for large – eddy simulation on unstructured meshes , .
[25] E. Erturk,et al. Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.
[26] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[27] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[28] Ping Lin,et al. An Asymptotic Fitting Finite Element Method with Exponential Mesh Refinement for Accurate Computation of Corner Eddies in Viscous Flows , 2009, SIAM J. Sci. Comput..