Adaptive mesh finite-volume calculation of 2D lid-cavity corner vortices

Abstract An anisotropic refinement criterion suitable for Finite-Volume methods is presented and Navier–Stokes solutions are reported for the lid-driven cavity flow configuration at Re = 1000 with adaptive anisotropic meshes (h-refinement). The a posteriori error estimation criterion is based on the assessment of the goodness-of-fit of the least squares regression used to perform the variables profile reconstruction and it is capable of detecting both large-scale and small-scale flow phenomena. The criterion allowed to capture in detail the large-scale flow structure and also the sequence of creeping flow small sharp corner’s [1] eddies, up to the fourth corner vortex in addition to the primary cavity vortex. The smallest corner vortex detected is O ( 10 - 16 ) smaller in velocity magnitude compared with the cavity primary recirculation flow.

[1]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[2]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[3]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[4]  Fue-Sang Lien,et al.  A Cartesian Grid Method with Transient Anisotropic Adaptation , 2002 .

[5]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[6]  Karl Gustafson,et al.  Vortex dynamics of cavity flows , 1986 .

[7]  A. Veldman,et al.  Symmetry-preserving discretization of turbulent flow , 2003 .

[8]  P. N. Shankar,et al.  Moffatt eddies in the cone , 2005, Journal of Fluid Mechanics.

[9]  J. Pereira,et al.  A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .

[10]  A. D. Gosman,et al.  AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES , 2000 .

[11]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[12]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[13]  S. Dennis,et al.  Viscous eddies near a 90° and a 45° corner in flow through a curved tube of triangular cross-section , 1976, Journal of Fluid Mechanics.

[14]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[15]  C. J. Heaton,et al.  On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies , 2008 .

[16]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[17]  S. Muzaferija,et al.  Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .

[18]  Karl Gustafson,et al.  Cavity flow dynamics at higher reynolds number and higher aspect ratio , 1987 .

[19]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[20]  K. C. Hung,et al.  Vortex structure of steady flow in a rectangular cavity , 2006 .

[21]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[22]  C. Dalton,et al.  Numerical study of viscous flow in a cavity , 1973 .

[23]  P. Moin,et al.  A numerical method for large-eddy simulation in complex geometries , 2004 .

[24]  S. Benhamadouche,et al.  Colocated finite – volume schemes for large – eddy simulation on unstructured meshes , .

[25]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[26]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[27]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[28]  Ping Lin,et al.  An Asymptotic Fitting Finite Element Method with Exponential Mesh Refinement for Accurate Computation of Corner Eddies in Viscous Flows , 2009, SIAM J. Sci. Comput..