Parameter Optimization for the Extraction of Matching Points Between High-Resolution Multisensor Images in Urban Areas

The objective of this paper is to extract a suitable number of evenly distributed matched points, given the characteristics of the site and the sensors involved. The intent is to increase the accuracy of automatic image-to-image registration for high-resolution multisensor data. The initial set of matching points is extracted using a scale-invariant feature transform (SIFT)-based method, which is further used to evaluate the initial geometric relationship between the features of the reference and sensed images. The precise matching points are extracted considering location differences and local properties of features. The values of the parameters used in the precise matching are optimized using an objective function that considers both the distribution of the matching points and the reliability of the transformation model. In case studies, the proposed algorithm extracts an appropriate number of well-distributed matching points and achieves a higher correct-match rate than the SIFT method. The registration results for all sensors are acceptably accurate, with a root-mean-square error of less than 1.5 m.

[1]  Peter Reinartz,et al.  Combining Mutual Information and Scale Invariant Feature Transform for Fast and Robust Multisensor SAR Image Registration , 2009 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Amin Sedaghat,et al.  Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Luís Corte-Real,et al.  Automatic Image Registration Through Image Segmentation and SIFT , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Miguel Arias-Estrada,et al.  Iterative Closest SIFT Formulation for Robust Feature Matching , 2006, ISVC.

[6]  Li Wang,et al.  A robust multisource image automatic registration system based on the SIFT descriptor , 2012 .

[7]  David J. Hawkes,et al.  Voxel similarity measures for 3-D serial MR brain image registration , 1999, IEEE Transactions on Medical Imaging.

[8]  Peter Reinartz,et al.  Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data , 2011 .

[9]  Yun Zhang,et al.  Wavelet-based image registration technique for high-resolution remote sensing images , 2008, Comput. Geosci..

[10]  Qing Zhu,et al.  Seed point selection method for triangle constrained image matching propagation , 2006, IEEE Geoscience and Remote Sensing Letters.

[11]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  P. Gong,et al.  Automatic Registration of Airborne Images with Complex Local Distortion , 2006 .

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  Pramod K. Varshney,et al.  Mutual information-based image registration for remote sensing data , 2003 .

[16]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[17]  Dengrong Zhang,et al.  A fast and fully automatic registration approach based on point features for multi-source remote-sensing images , 2008, Comput. Geosci..

[18]  Peter Reinartz,et al.  Applicability of the SIFT operator to geometric SAR image registration , 2010 .

[19]  Peter Reinartz,et al.  Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Warren B. Cohen,et al.  Automated designation of tie-points for image-to-image coregistration , 2003 .

[21]  Chia-Ling Tsai,et al.  Registration of Challenging Image Pairs: Initialization, Estimation, and Decision , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  A. Ardeshir Goshtasby,et al.  A comparative study of transformation functions for nonrigid image registration , 2006, IEEE Transactions on Image Processing.

[23]  Javier González,et al.  Improving Piecewise Linear Registration of High-Resolution Satellite Images Through Mesh Optimization , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Yun Zhang,et al.  A Novel Interest-Point-Matching Algorithm for High-Resolution Satellite Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Yang Huachao,et al.  Robust and Precise Registration of Oblique Images Based on Scale-Invariant Feature Transformation Algorithm , 2012, IEEE Geoscience and Remote Sensing Letters.

[26]  Vicente Arévalo,et al.  An experimental evaluation of non‐rigid registration techniques on Quickbird satellite imagery , 2008 .

[27]  Youkyung Han,et al.  Automatic Registration of High-Resolution Images Using Local Properties of Features , 2012 .

[28]  Guoyou Wang,et al.  Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration , 2009, IEEE Geoscience and Remote Sensing Letters.

[29]  Chunhong Pan,et al.  Multilevel SIFT Matching for Large-Size VHR Image Registration , 2012, IEEE Geoscience and Remote Sensing Letters.

[30]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[31]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Chunhong Pan,et al.  Registration of Optical and SAR Satellite Images by Exploring the Spatial Relationship of the Improved SIFT , 2013, IEEE Geoscience and Remote Sensing Letters.

[33]  Jane Fulton Suri Communicating with Designers: The Role of Empathy, Evidence and Inspiration , 2000 .

[34]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[36]  Andrew Zisserman,et al.  Computer vision applied to super resolution , 2003, IEEE Signal Process. Mag..

[37]  A. Ardeshir Goshtasby,et al.  Piecewise linear mapping functions for image registration , 1986, Pattern Recognit..