The Moore-Penrose inverse of 2 × 2 matrices over a certain ∗-regular ring
暂无分享,去创建一个
Pedro Patrício | Jianlong Chen | Xiaoxiang Zhang | Huihui Zhu | P. Patrício | Jianlong Chen | Huihui Zhu | Xiaoxiang Zhang
[1] J. J. Koliha,et al. Elements of rings with equal spectral idempotents , 2002, Journal of the Australian Mathematical Society.
[2] B. Magajna. Bicommutants and ranges of derivations , 2012, 1208.3941.
[3] Ching-hsiang Hung,et al. The Moore-Penrose inverse of a partitioned matrix ? , 1975 .
[4] R. Penrose. A Generalized inverse for matrices , 1955 .
[5] R. E. Cline. Representations for the Generalized Inverse of a Partitioned Matrix , 1964 .
[6] M. Drazin. Commuting properties of generalized inverses , 2013 .
[7] R. Hartwig,et al. WHEN DOES THE MOORE-PENROSE INVERSE FLIP? , 2012 .
[8] R. Hartwig. An application of the Moore-Penrose inverse to antisymmetric relations , 1980 .
[9] Randall E. Cline,et al. Representations for the Generalized Inverse of Sums of Matrices , 1965 .
[10] R. Hartwig,et al. Block generalized inverses , 1976 .