Noncommuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres

We consider formulations for the Helmholtz operator for conically propagating modes on an array of high contrast ferromagnetic cylindrical inclusions in the limit when their wavelength outside the inclusions tends to infinity. If one considers a trajectory in the coordinates (frequency, conical parameter), then the effective phase refractive index will depend on this trajectory in the vicinity of the origin.

[1]  D. Felbacq,et al.  Noncommuting limits in homogenization theory of electromagnetic crystals , 2002 .

[2]  S. Guenneau,et al.  Duality relation for the Maxwell system. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Guy Bouchitté,et al.  Homogenization of a set of parallel fibres , 1997 .

[4]  Gang Bao,et al.  Maxwell's Equations in a Perturbed Periodic Structure , 2002, Adv. Comput. Math..

[5]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  S. Guenneau,et al.  Homogenization of Three-Dimensional Finite Photonic Crystals - Abstract , 2000 .

[8]  Christophe Geuzaine,et al.  A finite element formulation for spectral problems in optical fibers , 2001 .

[9]  Nicorovici,et al.  Photonic Band Gaps: Noncommuting Limits and the "Acoustic Band" , 1995, Physical review letters.

[10]  M. Sickmiller,et al.  3D Wire mesh photonic crystals. , 1996, Physical review letters.

[11]  Christopher G. Poulton,et al.  Oblique propagation of electromagnetic and elastic waves for an array of cylindrical fibres , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  A. L. Pokrovsky,et al.  Electrodynamics of metallic photonic crystals and the problem of left-handed materials. , 2001, Physical review letters.

[13]  David R. Smith,et al.  Loop-wire medium for investigating plasmons at microwave frequencies , 1999 .

[14]  Sébastien Guenneau,et al.  HOMOGENIZATION OF THREE-DIMENSIONAL FINITE PHOTONIC CRYSTALS , 2000 .

[15]  D. Felbacq,et al.  Anomalous homogeneous behaviour of metallic photonic crystals , 2000 .

[16]  Ross C. McPhedran,et al.  Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  S. Guenneau,et al.  Analysis of Elastic Band Structures for Oblique Incidence , 2004 .

[18]  J. Arriaga,et al.  Long-wavelength limit (homogenization) for two-dimensional photonic crystals , 2002 .

[19]  S. Guenneau,et al.  Conical propagation of electromagnetic waves through an array of cylindrical inclusions , 2003 .

[20]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[21]  Nicorovici,et al.  Photonic band gaps for arrays of perfectly conducting cylinders. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Ross C. McPhedran,et al.  Noncommuting Limits in Electromagnetic Scattering: Asymptotic Analysis for an Array of Highly Conducting Inclusions , 2001, SIAM J. Appl. Math..