Learning Hierarchical Priors in VAEs

We propose to learn a hierarchical prior in the context of variational autoencoders to avoid the over-regularisation resulting from a standard normal prior distribution. To incentivise an informative latent representation of the data, we formulate the learning problem as a constrained optimisation problem by extending the Taming VAEs framework to two-level hierarchical models. We introduce a graph-based interpolation method, which shows that the topology of the learned latent representation corresponds to the topology of the data manifold---and present several examples, where desired properties of latent representation such as smoothness and simple explanatory factors are learned by the prior.

[1]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[2]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[3]  Fabio Viola,et al.  Taming VAEs , 2018, ArXiv.

[4]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[5]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[6]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[7]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[8]  Pascal Vincent,et al.  The Manifold Tangent Classifier , 2011, NIPS.

[9]  Sami Romdhani,et al.  A 3D Face Model for Pose and Illumination Invariant Face Recognition , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[10]  Stefano Ermon,et al.  InfoVAE: Balancing Learning and Inference in Variational Autoencoders , 2019, AAAI.

[11]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[12]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[13]  Alexei A. Efros,et al.  Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[15]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[16]  Justin Bayer,et al.  Efficient movement representation by embedding Dynamic Movement Primitives in deep autoencoders , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[17]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[18]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[19]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[20]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[21]  Murray Shanahan,et al.  Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.

[22]  Justin Bayer,et al.  Fast Approximate Geodesics for Deep Generative Models , 2018, ICANN.

[23]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[24]  David Duvenaud,et al.  Reinterpreting Importance-Weighted Autoencoders , 2017, ICLR.

[25]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[26]  Eric P. Xing,et al.  Nonparametric Variational Auto-Encoders for Hierarchical Representation Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[27]  Marco Cote STICK-BREAKING VARIATIONAL AUTOENCODERS , 2017 .

[28]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[29]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[30]  Dmitry P. Vetrov,et al.  Doubly Semi-Implicit Variational Inference , 2018, AISTATS.

[31]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[32]  Li Fei-Fei,et al.  Tackling Over-pruning in Variational Autoencoders , 2017, ArXiv.