Fast bayesian matching pursuit

A low-complexity recursive procedure is presented for minimum mean squared error (MMSE) estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both an approximate MMSE estimate of the parameter vector and a set of high posterior probability mixing parameters. Emphasis is given to the case of a sparse parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions between MMSE estimation and MAP model selection. The set of high probability mixing parameters not only provides MAP basis selection, but also yields relative probabilities that reveal potential ambiguity in the sparse model.

[1]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[2]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[3]  Thomas S. Huang,et al.  Improvement of discrete band-limited signal extrapolation by iterative subspace modification , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[5]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[6]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[7]  Yoram Bresler,et al.  A fast and accurate Fourier algorithm for iterative parallel-beam tomography , 1996, IEEE Trans. Image Process..

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[10]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[11]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[12]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[13]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[14]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[15]  P. Kuppusamy EPR spectroscopy in biology and medicine. , 2004, Antioxidants & redox signaling.

[16]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[17]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[18]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[19]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[20]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[21]  Erik G. Larsson,et al.  Linear Regression With a Sparse Parameter Vector , 2007, IEEE Transactions on Signal Processing.

[22]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[23]  Lawrence Carin,et al.  Bayesian compressive sensing and projection optimization , 2007, ICML '07.