Characterization of unusual MgCa particles involved in the formation of foraminifera shells using a novel quantitative cryo SEM/EDS protocol.

[1]  P. Fratzl,et al.  The Crystallization of Amorphous Calcium Carbonate is Kinetically Governed by Ion Impurities and Water , 2018, Advanced science.

[2]  A. Marshall Quantitative x‐ray microanalysis of model biological samples in the SEM using remote standards and the XPP analytical model , 2017, Journal of microscopy.

[3]  S. Weiner,et al.  Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence-SEM-EDS technique. , 2016, Journal of structural biology.

[4]  B. Hönisch,et al.  Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation , 2016, Proceedings of the National Academy of Sciences.

[5]  P. V. Sundareshwar,et al.  Multiphase Biomineralization: Enigmatic Invasive Siliceous Diatoms Produce Crystalline Calcite , 2016 .

[6]  S. Audic,et al.  A role for diatom-like silicon transporters in calcifying coccolithophores , 2016, Nature Communications.

[7]  Y. Nys,et al.  Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. , 2015, Journal of structural biology.

[8]  T. Tyliszczak,et al.  The coordination of Mg in foraminiferal calcite , 2013 .

[9]  A. Palmer,et al.  Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. , 2012, Biochimica et biophysica acta.

[10]  S. Weiner,et al.  Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. , 2012, Chemistry.

[11]  D. Allemand,et al.  Coral biomineralization: From the gene to the environment , 2011 .

[12]  S. Weiner,et al.  Crystallization Pathways in Biomineralization , 2011 .

[13]  Celia Miller,et al.  Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: energy dispersive X-ray microanalysis (CEDX) applications , 2010 .

[14]  F. Wolf,et al.  Intracellular magnesium detection: imaging a brighter future. , 2010, The Analyst.

[15]  K. Miller,et al.  TRADITIONAL AND EMERGING GEOCHEMICAL PROXIES IN FORAMINIFERA , 2010 .

[16]  H. Ehrlich,et al.  Insights into Chemistry of Biological Materials: Newly Discovered Silica-Aragonite-Chitin Biocomposites in Demosponges , 2010 .

[17]  P. Dove,et al.  Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification , 2009, Proceedings of the National Academy of Sciences.

[18]  J. Erez,et al.  The role of seawater endocytosis in the biomineralization process in calcareous foraminifera , 2009, Proceedings of the National Academy of Sciences.

[19]  H. Nomaki,et al.  Intracellular pH distribution in foraminifera determined by the fluorescent probe HPTS , 2008 .

[20]  L. Gago-Duport,et al.  Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: pathways to the formation of crystalline phases. , 2008, Journal of structural biology.

[21]  G. Wörheide,et al.  Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. , 2008, Micron.

[22]  M. Hodson,et al.  Crystallization of calcite from amorphous calcium carbonate: earthworms show the way , 2008, Mineralogical Magazine.

[23]  Matthew C. Mowlem,et al.  Determination of nitrate and phosphate in seawater at nanomolar concentrations , 2008 .

[24]  J. Nijsse,et al.  Cryo-planing for cryo-scanning electron microscopy. , 2006, Scanning.

[25]  K. Shirai,et al.  Microdistribution of Mg/Ca, Sr/Ca, and Ba/Ca ratios in Pulleniatina obliquiloculata test by using a NanoSIMS: Implication for the vital effect mechanism , 2006 .

[26]  T. Naganuma,et al.  A haptophyte bearing siliceous scales: ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). , 2006, Protist.

[27]  J. Erez,et al.  Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera , 2006 .

[28]  J. Erez,et al.  Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective , 2006 .

[29]  J. Erez,et al.  Novel observations on biomineralization processes in foraminifera and implications for Mg/Ca ratio in the shells , 2005 .

[30]  Rüdiger Rudolf,et al.  Looking forward to seeing calcium , 2003, Nature Reviews Molecular Cell Biology.

[31]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[32]  S. Weiner,et al.  The Transient Phase of Amorphous Calcium Carbonate in Sea Urchin Larval Spicules: The Involvement of Proteins and Magnesium Ions in Its Formation and Stabilization , 2003 .

[33]  J. Erez The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies , 2003 .

[34]  Walther,et al.  Biological ultrastructure as revealed by high resolution cryo‐SEM of block faces after cryo‐sectioning , 1999, Journal of microscopy.

[35]  M. Pilson,et al.  An Introduction to the Chemistry of the Sea , 1998 .

[36]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  M. Mccully,et al.  Planing frozen hydrated plant specimens for SEM observation and EDX microanalysis , 1994, Microscopy research and technique.

[38]  J. Kanis,et al.  A study of intracellular orthophosphate concentration in human muscle and erythrocytes by 31P nuclear magnetic resonance spectroscopy and selective chemical assay. , 1986, Clinical science.

[39]  K. Oates,et al.  The ionic concentrations in the mitochondria-rich or chloride cell of Fundulus heteroclitus , 1983 .

[40]  Robert A. Berner,et al.  The role of magnesium in the crystal growth of calcite and aragonite from sea water , 1975 .

[41]  K. Simkiss Variations in the Crystalline Form of Calcium Carbonate precipitated from Artificial Sea Water , 1964, Nature.

[42]  P. Dove,et al.  The Effect of Carboxylates on the Mg Content of Calcites that Transform from ACC , 2013 .

[43]  A. Putnis,et al.  Nano-cluster composite structure of calcitic sponge spicules--a case study of basic characteristics of biominerals. , 2006, Journal of inorganic biochemistry.

[44]  S. Weiner,et al.  Formation of High‐Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications , 2000 .

[45]  Patrick Echlin,et al.  Low-Temperature Microscopy and Analysis , 1992, Springer US.

[46]  J. Lipps Biotic Interactions in Benthic Foraminifera , 1983 .

[47]  A. Thomson,et al.  Bioinorganic chemistry , 1978, Nature.