Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering

The effect of anisotropic interfacial strain on epitaxial growth and optical emission of sodium rare‐earth fluoride core–shell nanoparticles is investigated. A variety of sodium rare‐earth fluoride shells are grown on hexagonal‐phase NaYF4:Yb/Er core for providing anisotropic tuning of interfacial strains. Using high‐resolution transmission electron microscopy and X‐ray diffraction characterizations, the correlations between the epitaxial habits and the interfacial strains are quantitatively addressed. Furthermore, the growth affinity is tuned by controlling precursor concentration in conjunction with Ca2+ doping, which results in accurate regulation of the anisotropic growth. The lattice strain resulting from mismatched epitaxy is found to enhance luminescence response of the nanoparticles to temperature change.

[1]  U. Banin,et al.  Strain-controlled shell morphology on quantum rods , 2019, Nature Communications.

[2]  Bing Chen,et al.  NaYbF4@CaF2 core-satellite upconversion nanoparticles: one-pot synthesis and sensitive detection of glutathione. , 2018, Nanoscale.

[3]  M. Bosman,et al.  In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles. , 2018, Journal of the American Chemical Society.

[4]  Qian Liu,et al.  Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance , 2018, Nature Photonics.

[5]  J. Dionne,et al.  Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core-Shell Nanoparticles. , 2018, Nano letters.

[6]  R. E. Schaak,et al.  Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries , 2018, Science.

[7]  L. Vincze,et al.  Simultaneously Excited Downshifting/Upconversion Luminescence from Lanthanide‐Doped Core/Shell Fluoride Nanoparticles for Multimode Anticounterfeiting , 2018 .

[8]  D. Leonard,et al.  Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods. , 2018, The journal of physical chemistry letters.

[9]  Hua Zhang,et al.  Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires , 2018, Nature Chemistry.

[10]  Alexander N. Chen,et al.  Surface Passivation and Supersaturation: Strategies for Regioselective Deposition in Seeded Syntheses. , 2017, ACS nano.

[11]  Xiaowang Liu,et al.  Hedgehog‐Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Single‐Particle Level , 2017, Advanced materials.

[12]  Shaojun Guo,et al.  Strain-controlled electrocatalysis on multimetallic nanomaterials , 2017 .

[13]  F. Huang,et al.  Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles. , 2017, Nanoscale.

[14]  Si Cheng,et al.  Selective Pd Deposition on Au Nanobipyramids and Pd Site‐Dependent Plasmonic Photocatalytic Activity , 2017 .

[15]  E. Coy,et al.  Seeded Growth Synthesis of Au–Fe3O4 Heterostructured Nanocrystals: Rational Design and Mechanistic Insights , 2017 .

[16]  R. Quintero‐Bermudez,et al.  Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy , 2017, Nature.

[17]  G. Radnóczi,et al.  Size dependent spinodal decomposition in Cu-Ag nanoparticles , 2017 .

[18]  Tao Wu,et al.  Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis , 2016, Science.

[19]  Tianli Zhang,et al.  Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping , 2016 .

[20]  Max N. Mankin,et al.  Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions. , 2016, Nano letters.

[21]  M. Haase,et al.  Synthese aufwärtskonvertierender 10 nm großer β‐NaYF4:Yb,Er/NaYF4‐Kern/Schale‐Nanokristalle mit 5 nm großen Partikelkernen , 2016 .

[22]  Simon Dühnen,et al.  Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 Core/Shell Upconversion Nanocrystals with 5 nm Particle Cores. , 2016, Angewandte Chemie.

[23]  Wenfei Zhang,et al.  Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing , 2016, Nature Communications.

[24]  J. I. Climente,et al.  Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals , 2015, Nature Communications.

[25]  L. Carlos,et al.  Photoluminescent thermometer based on a phase-transition lanthanide silicate with unusual structural disorder. , 2015, Journal of the American Chemical Society.

[26]  Michael D. Wisser,et al.  Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. , 2015, Nano letters.

[27]  R. Klie,et al.  Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. , 2015, Nature materials.

[28]  Xiaogang Liu,et al.  Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes , 2014, Nature Protocols.

[29]  Hongwei Song,et al.  Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. , 2014, Dalton transactions.

[30]  Ju Xu,et al.  Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping. , 2013, Nanoscale.

[31]  Bartosz A Grzybowski,et al.  Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. , 2013, Nature nanotechnology.

[32]  M. Engel,et al.  Competition of shape and interaction patchiness for self-assembling nanoplates. , 2013, Nature chemistry.

[33]  J. Arbiol,et al.  Twinning‐, Polytypism‐, and Polarity‐Induced Morphological Modulation in Nonplanar Nanostructures with van der Waals Epitaxy , 2013 .

[34]  Francesca Rossi,et al.  STEM_CELL: a software tool for electron microscopy: part 2--analysis of crystalline materials. , 2013, Ultramicroscopy.

[35]  S. van Dijken,et al.  Epitaxial Ferroelectric Heterostructures with Nanocolumn‐Enhanced Dynamic Properties , 2013 .

[36]  U. W. Pohl Epitaxy of Semiconductors: Introduction to Physical Principles , 2013 .

[37]  U. W. Pohl Epitaxy of Semiconductors , 2020, Graduate Texts in Physics.

[38]  Ru‐Shi Liu,et al.  The effect of surface coating on energy migration-mediated upconversion. , 2012, Journal of the American Chemical Society.

[39]  K. Landfester,et al.  How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. , 2012, Small.

[40]  Jianhua Hao,et al.  Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. , 2011, Angewandte Chemie.

[41]  C. de Mello Donegá Synthesis and properties of colloidal heteronanocrystals. , 2011, Chemical Society reviews.

[42]  Younan Xia,et al.  Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik? , 2009 .

[43]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[44]  Peidong Yang,et al.  Shaping binary metal nanocrystals through epitaxial seeded growth. , 2007, Nature materials.

[45]  A. K. Tyagi,et al.  High temperature X-ray diffraction studies on sodium yttrium fluoride , 2004 .

[46]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[47]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[48]  J. Astier,et al.  Crystallization mechanisms in solution , 1988 .

[49]  G. S. Pawley,et al.  Unit-cell refinement from powder diffraction scans , 1981 .

[50]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .