THE CONTINGENCY PERIODOGRAM: A METHOD OF IDENTIFYING RHYTHMS IN SERIES OF NONMETRIC ECOLOGICAL DATA

(1) Analysis of series, in time or space is a subject of growing interest in ecology, but the methods hitherto available (correlogram, periodogram, spectral analysis) were restricted to the analysis of metric (quantitative) data. Many ecological series, however, are of (or contain) essential variables which are qualitative (categorical), and many quantitative variables are more efficiently sampled as rank-ordered (ordinal) variables. There are no numerical methods to analyse series of nonmetric data. (2) In this paper, the periodogram of Whittaker & Robinson is generalized to qualitative data series, using information theoretic measures. Algorithms are also described to partition rank-ordered variables into classes, in order to analyse them using the contingency periodogram. (3) The validity of the contingency periodogram is assessed by comparing its results with those of the periodogram of Schuster, using two series of metric data. Both methods identify the same periods for a series of artificial data, and also for serial measurements of the photosynthetic capacity of estuarine phytoplankton, even when these metric data are reduced to a small number of states prior to contingency periodogram analysis. (4) The contingency periodogram is also used to analyse a multivariate (multi-species) phytoplankton series. The multivariate data are reduced to a single multi-state qualitative variate by clustering the samples. At least one of the periods revealed is surprising, but can be explained.

[1]  J. G. Ables,et al.  Maximum Entropy Spectral Analysis , 1974 .

[2]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[3]  Robert H. Whittaker,et al.  A Study of Summer Foliage Insect Communities in the Great Smoky Mountains , 1952 .

[4]  M. Kendall Rank Correlation Methods , 1949 .

[5]  T. Anderson Statistical analysis of time series , 1974 .

[6]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[7]  S. Frontier ÉVALUATION DE LA QUANTITÉ TOTALE D'UNE CATÉGORIE D'ORGANISMES PLANCTONIQUES DANS UN SECTEUR NÉRITIQUE , 1973 .

[8]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[9]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[10]  Robert K. Colwell,et al.  PREDICTABILITY, CONSTANCY, AND CONTINGENCY OF PERIODIC PHENOMENA' , 1974 .

[11]  J. T. Enright,et al.  The search for rhythmicity in biological time-series. , 1965, Journal of theoretical biology.

[12]  L. Fortier,et al.  Le contrôle de la variabilité à court terme du phytoplancton estuarien: stabilité verticale et profondeur critique , 1979 .

[13]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[14]  L. Legendre,et al.  Phytoplankton photosynthetic response to light in an internal tide dominated environment , 1982 .

[15]  L. Legendre,et al.  Effets des marées sur la variation circadienne de la capacité photosynthétique du phytoplancton de l'estuaire du saint-laurent☆ , 1979 .

[16]  George Robinson,et al.  The Calculus of Observations - A Treatise on Numerical Mathematics , 1924 .

[17]  W. T. Williams,et al.  A Generalized Sorting Strategy for Computer Classifications , 1966, Nature.

[18]  L. Legendre,et al.  Dynamique d'une population estuarienne de Diatomées planctoniques : effet de l'alternance des marées de morte-eau et de vive-eau , 1979 .

[19]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[20]  S. Frontier Sur une mt́hode d'analyse faunistique rapide du zooplancton , 1969 .

[21]  E. Slud,et al.  Binary Time Series , 1980 .

[22]  L. Legendre,et al.  Variabilité à court terme du phytoplancton de l'estuaire du Saint-Laurent , 1978 .

[23]  K. Denman,et al.  Spectral Analysis in Ecology , 1975 .