Fuzzy and stochastic approach applied to rubber like materials
暂无分享,去创建一个
Rolf Mahnken | Ismail Caylak | Eduard Penner | Alex Dridger | R. Mahnken | I. Caylak | E. Penner | A. Dridger
[1] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[2] Rolf Mahnken,et al. A variational formulation for fuzzy analysis in continuum mechanics , 2017 .
[3] Unyime O. Akpan,et al. Practical fuzzy finite element analysis of structures , 2001 .
[4] Elisabeth Ullmann,et al. Computational aspects of the stochastic finite element method , 2007 .
[5] Rolf Mahnken,et al. A possibilistic finite element method for sparse data , 2018 .
[6] Nicole Propst,et al. Mathematical Foundations Of Elasticity , 2016 .
[7] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[8] Andreas Keese,et al. Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .
[9] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[10] F. Larsson,et al. Parameter identification with sensitivity assessment and error computation , 2007 .
[11] Wim Desmet,et al. A response surface based optimisation algorithm for the calculation of fuzzy envelope FRFs of models with uncertain properties , 2008 .
[12] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[13] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[14] Alex H. Barbat,et al. Monte Carlo techniques in computational stochastic mechanics , 1998 .
[15] Susmita Naskar,et al. Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites , 2019, Composite Structures.
[16] M. Rozložník. Numerics of Gram-Schmidt orthogonalization , 2007 .
[17] W. Graf,et al. Fuzzy structural analysis using α-level optimization , 2000 .
[18] Robert L. Mullen,et al. Formulation of Fuzzy Finite‐Element Methods for Solid Mechanics Problems , 1999 .
[19] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[20] Wuan Luo. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .
[21] R. Mahnken,et al. Stochastic hyperelastic modeling considering dependency of material parameters , 2018 .
[22] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[23] C. Truesdell,et al. The Non-Linear Field Theories Of Mechanics , 1992 .
[24] J. B. Walsh,et al. An introduction to stochastic partial differential equations , 1986 .
[25] Rolf Mahnken,et al. Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements , 2012 .
[26] D. Bertsekas. Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[27] Robert LIN,et al. NOTE ON FUZZY SETS , 2014 .
[28] Rolf Mahnken,et al. Goal‐oriented adaptive refinement for phase field modeling with finite elements , 2013 .
[29] Christian Bucher. Methods of Reliability Analysis in the context of RDO , 2011 .
[30] Wim Desmet,et al. Application of fuzzy numerical techniques for product performance analysis in the conceptual and preliminary design stage , 2008 .
[31] Muneo Hori,et al. Stochastic finite element method for elasto‐plastic body , 1999 .
[32] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[33] Jeroen A. S. Witteveen,et al. Stochastic collocation for correlated inputs , 2015 .
[34] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[35] Sondipon Adhikari,et al. Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion , 2016 .
[36] Michael Kaliske,et al. Analysis of dynamical processes under consideration of polymorphic uncertainty , 2015 .
[37] M. Beer,et al. Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics , 2004 .
[38] L. E. Malvern. Introduction to the mechanics of a continuous medium , 1969 .
[39] Sondipon Adhikari,et al. A spectral approach for fuzzy uncertainty propagation in finite element analysis , 2014, Fuzzy Sets Syst..
[40] George E. Karniadakis,et al. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..
[41] Didier Dubois,et al. Fuzzy sets and systems ' . Theory and applications , 2007 .
[42] Å. Björck. Numerics of Gram-Schmidt orthogonalization , 1994 .
[43] N. Zabaras,et al. Uncertainty propagation in finite deformations––A spectral stochastic Lagrangian approach , 2006 .
[44] D. Xiu,et al. Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .
[45] Christian Miehe,et al. Computation of isotropic tensor functions , 1993 .
[46] Rolf Mahnken,et al. Identification of Material Parameters for Constitutive Equations , 2004 .
[47] B. Rosic. Variational Formulations and Functional Approximation Algorithms in Stochastic Plasticity of Materials , 2012 .
[48] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[49] Jeroen A. S. Witteveen,et al. Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .