Fuzzy and stochastic approach applied to rubber like materials

Abstract In many engineering applications, a material behaviour, e.g. hyperelasticity, is described by appropriate constitutive models. These often lead to uncertainty due to heterogeneity of materials. As a key idea, materials are described by uncertain parameters, which may be modelled by different uncertainty approaches. In an experimental investigation, 40 specimens are used for parameter identification of an Ogden model for rubber like materials in order to quantify the uncertainty of the material parameters. Furthermore, a statistical analysis of the material parameters including their correlations is studied. The first part of this work is directed to epistemic uncertainty in the framework of constitutive models, which is taken into account by a fuzzy approach. An underlying min-max optimisation problem is approximated by α-level discretisation, where solutions are obtained with simple constraints. The second part of this work is directed to aleatoric uncertainty in the framework of constitutive models, which is taken into account by a stochastic approach, where hyperelastic stochastic material parameters are expanded with a multivariate polynomial chaos expansion. As a numerical example, a static problem for uniaxial tension of a rectangular plate is considered to demonstrate the versatility of the proposed fuzzy and stochastic approach.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  Rolf Mahnken,et al.  A variational formulation for fuzzy analysis in continuum mechanics , 2017 .

[3]  Unyime O. Akpan,et al.  Practical fuzzy finite element analysis of structures , 2001 .

[4]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[5]  Rolf Mahnken,et al.  A possibilistic finite element method for sparse data , 2018 .

[6]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[7]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[8]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[9]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[10]  F. Larsson,et al.  Parameter identification with sensitivity assessment and error computation , 2007 .

[11]  Wim Desmet,et al.  A response surface based optimisation algorithm for the calculation of fuzzy envelope FRFs of models with uncertain properties , 2008 .

[12]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[13]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[14]  Alex H. Barbat,et al.  Monte Carlo techniques in computational stochastic mechanics , 1998 .

[15]  Susmita Naskar,et al.  Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites , 2019, Composite Structures.

[16]  M. Rozložník Numerics of Gram-Schmidt orthogonalization , 2007 .

[17]  W. Graf,et al.  Fuzzy structural analysis using α-level optimization , 2000 .

[18]  Robert L. Mullen,et al.  Formulation of Fuzzy Finite‐Element Methods for Solid Mechanics Problems , 1999 .

[19]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[20]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[21]  R. Mahnken,et al.  Stochastic hyperelastic modeling considering dependency of material parameters , 2018 .

[22]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[23]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[24]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[25]  Rolf Mahnken,et al.  Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements , 2012 .

[26]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[27]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[28]  Rolf Mahnken,et al.  Goal‐oriented adaptive refinement for phase field modeling with finite elements , 2013 .

[29]  Christian Bucher Methods of Reliability Analysis in the context of RDO , 2011 .

[30]  Wim Desmet,et al.  Application of fuzzy numerical techniques for product performance analysis in the conceptual and preliminary design stage , 2008 .

[31]  Muneo Hori,et al.  Stochastic finite element method for elasto‐plastic body , 1999 .

[32]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[33]  Jeroen A. S. Witteveen,et al.  Stochastic collocation for correlated inputs , 2015 .

[34]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[35]  Sondipon Adhikari,et al.  Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion , 2016 .

[36]  Michael Kaliske,et al.  Analysis of dynamical processes under consideration of polymorphic uncertainty , 2015 .

[37]  M. Beer,et al.  Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics , 2004 .

[38]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[39]  Sondipon Adhikari,et al.  A spectral approach for fuzzy uncertainty propagation in finite element analysis , 2014, Fuzzy Sets Syst..

[40]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[41]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[42]  Å. Björck Numerics of Gram-Schmidt orthogonalization , 1994 .

[43]  N. Zabaras,et al.  Uncertainty propagation in finite deformations––A spectral stochastic Lagrangian approach , 2006 .

[44]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[45]  Christian Miehe,et al.  Computation of isotropic tensor functions , 1993 .

[46]  Rolf Mahnken,et al.  Identification of Material Parameters for Constitutive Equations , 2004 .

[47]  B. Rosic Variational Formulations and Functional Approximation Algorithms in Stochastic Plasticity of Materials , 2012 .

[48]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[49]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .