Invariant measures for non-autonomous dissipative dynamical systems

Given a non-autonomous process $U(\cdot,\cdot)$ on a complete separable metric space $X$ that has a pullback attractor $A(\cdot)$, we construct a family of invariant Borel probability measures $\{\mu_t\}_{t\in \mathbb{R}}$: the measures satisfy ${\rm supp }\,{\mu_t}\subset A(t)$ for all $t\in \mathbb{R}$ and the invariance property $\mu_t(E)=\mu_\tau(U(t,\tau)^{-1}E)$ for every Borel set $E\in X$. Our construction uses the generalised Banach limit. We then show that a Liouville-type equation holds for the evolution of $\mu_t$ under the process $U(\cdot,\cdot)$ generated by the ordinary differential equation $u_t=F(t,u)$ on a Banach space, and apply our theory to the non-autonomous 2D Navier--Stokes equations on unbounded domains satisfying a Poincare inequality.

[1]  Tomás Caraballo,et al.  Pullback attractors for asymptotically compact non-autonomous dynamical systems , 2006 .

[2]  Equivalence of Invariant Measures and Stationary Statistical Solutions for The Autonomous Globally Modified Navier-Stokes Equations , 2009 .

[3]  Xiaoming Wang,et al.  Upper semi-continuity of stationary statistical properties of dissipative systems , 2008 .

[4]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[5]  James C. Robinson,et al.  Invariant Measures for Dissipative Systems and Generalised Banach Limits , 2011 .

[6]  Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations , 2008 .

[7]  Nathan E. Glatt-Holtz,et al.  Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications , 2011, 1110.4354.

[8]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[9]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[10]  R. Temam Navier-Stokes Equations , 1977 .

[11]  Paul Glendinning,et al.  From finite to infinite dimensional dynamical systems , 2001 .

[12]  José A. Langa,et al.  Attractors for infinite-dimensional non-autonomous dynamical systems , 2012 .

[13]  Tomás Caraballo,et al.  Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains , 2006 .

[14]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[15]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[16]  Ricardo Rosa,et al.  The global attractor for the 2D Navier-Stokes flow on some unbounded domains , 1998 .

[17]  G. Łukaszewicz Pullback attractors and statistical solutions for 2-D Navier-Stokes equations , 2008 .