Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices: CP and IP Approaches.- Connections in Networks: Hardness of Feasibility Versus Optimality.- Modeling the Regular Constraint with Integer Programming.- Hybrid Local Search for Constrained Financial Portfolio Selection Problems.- The "Not-Too-Heavy Spanning Tree" Constraint.- Eliminating Redundant Clauses in SAT Instances.- Cost-Bounded Binary Decision Diagrams for 0-1 Programming.- YIELDS: A Yet Improved Limited Discrepancy Search for CSPs.- A Global Constraint for Total Weighted Completion Time.- Computing Tight Time Windows for RCPSPWET with the Primal-Dual Method.- Necessary Condition for Path Partitioning Constraints.- A Constraint Programming Approach to the Hospitals / Residents Problem.- Best-First AND/OR Search for 0/1 Integer Programming.- A Position-Based Propagator for the Open-Shop Problem.- Directional Interchangeability for Enhancing CSP Solving.- A Continuous Multi-resources cumulative Constraint with Positive-Negative Resource Consumption-Production.- Replenishment Planning for Stochastic Inventory Systems with Shortage Cost.- Preprocessing Expression-Based Constraint Satisfaction Problems for Stochastic Local Search.- The Deviation Constraint.- The Linear Programming Polytope of Binary Constraint Problems with Bounded Tree-Width.- On Boolean Functions Encodable as a Single Linear Pseudo-Boolean Constraint.- Solving a Stochastic Queueing Control Problem with Constraint Programming.- Constrained Clustering Via Concavity Cuts.- Bender's Cuts Guided Large Neighborhood Search for the Traveling Umpire Problem.- A Large Neighborhood Search Heuristic for Graph Coloring.- Generalizations of the Global Cardinality Constraint for Hierarchical Resources.- A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems.