Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4

The performance of six different density functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in describing the infrared spectrum of forsterite, a crystalline periodic system with orthorhombic unit cell (28 atoms in the primitive cell, Pbmn space group), is investigated by using the periodic ab initio CRYSTAL09 code and an all‐electron Gaussian‐type basis set. The transverse optical (TO) branches of the 35 IR active modes are evaluated at the equilibrium geometry together with the oscillator strengths and the high‐frequency dielectric tensor ϵ∞. These quantities are essential to compute the dielectric function ϵ(ν), and then the reflectance spectrum R(ν), which is compared with experiment. It turns out that hybrid functionals perform better than LDA and GGA, in general; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is better than PBE; that LDA is the worst performing functional among the six under study. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

[1]  Jeanine Weekes Schroer,et al.  The Finite String Newsletter Abstracts of Current Literature Glisp User's Manual , 2022 .

[2]  R. Dovesi,et al.  Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point , 2006 .

[3]  R. Dovesi,et al.  Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine , 2009 .

[4]  A. Speck,et al.  Infrared laboratory absorbance spectra of olivine: using classical dispersion analysis to extract peak parameters , 2010 .

[5]  B. Civalleri,et al.  Thermophysical properties of the α–β–γ polymorphs of Mg2SiO4: a computational study , 2009 .

[6]  W. Spitzer,et al.  Theory of the Optical Properties of Quartz in the Infrared , 1962 .

[7]  R. Orlando,et al.  The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme. , 2009, The Journal of chemical physics.

[8]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[9]  Roberto Dovesi,et al.  Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. , 2008, The Journal of chemical physics.

[10]  Roberto Dovesi,et al.  Ab initio simulation of the IR spectra of pyrope, grossular, and andradite , 2008, J. Comput. Chem..

[11]  R. Dovesi,et al.  The vibrational spectrum of lizardite-1T [Mg3Si2O5(OH)4] at the Γ point: A contribution from an ab initio periodic B3LYP calculation , 2009 .

[12]  R. Dovesi,et al.  The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code , 2006 .

[13]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[14]  A. Tsuchiyama,et al.  Infrared reflection spectra of forsterite crystal , 2006 .

[15]  R. Orlando,et al.  The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation , 2004 .

[16]  Roberto Dovesi,et al.  Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. , 2008, The Journal of chemical physics.

[17]  Liège,et al.  Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides , 2008, 0805.0753.

[18]  Georg Kresse,et al.  The AM05 density functional applied to solids. , 2008, The Journal of chemical physics.

[19]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[20]  R. D. Shannon,et al.  Dielectric constants of chrysoberyl, spinel, phenacite, and forsterite and the oxide additivity rule , 1989 .

[21]  Crystal chemistry of forsterite: A first-principles study , 1997 .

[22]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[23]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[24]  P. Blaha,et al.  Calculation of the lattice constant of solids with semilocal functionals , 2009 .

[25]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[26]  R. Orlando,et al.  Quantum-mechanical ab initio simulation of the Raman and IR spectra of Fe3Al2Si3O12 almandine. , 2009, The journal of physical chemistry. A.

[27]  Roberto Dovesi,et al.  Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO 3 , 1997 .

[28]  M. I. Bell,et al.  Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4) , 2010 .

[29]  R. Dovesi,et al.  The vibrational spectrum of alpha-AlOOH diaspore: an ab initio study with the CRYSTAL code. , 2007, The journal of physical chemistry. B.

[30]  R. Orlando,et al.  Vibration frequencies of Ca3Fe2Si3O12 andradite: an ab initio study with the CRYSTAL code. , 2005, The journal of physical chemistry. B.

[31]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[32]  B. Civalleri,et al.  Thermophysical properties of the a – b – c polymorphs of Mg 2 SiO 4 : a computational study , 2008 .

[33]  Roberto Dovesi,et al.  Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio study with the CRYSTAL code. , 2005, The journal of physical chemistry. B.

[34]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[35]  J. Garza,et al.  The infrared spectrum of spessartine Mn3Al2Si3O12: An ab initio all electron simulation with five different functionals (LDA, PBE, PBESOL, B3LYP and PBE0) , 2011 .

[36]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[37]  R. Orlando,et al.  Vibrational spectrum of katoite Ca3Al2[(OH)4]3: a periodic ab initio study. , 2006, The journal of physical chemistry. B.

[38]  R. Orlando,et al.  Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity , 2004 .

[39]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[40]  R. Dovesi,et al.  Ab initio quantum-mechanical prediction of the IR and Raman spectra of Ca3Cr2Si3O12 uvarovite garnet , 2010 .

[41]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  John P. McTague,et al.  Molecular Vibrations in Crystals , 1978 .

[43]  R. Dovesi,et al.  On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates , 2010 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[46]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[47]  K. Doll Implementation of analytical Hartree-Fock gradients for periodic systems , 2001, physics/0102049.

[48]  C. Catlow,et al.  A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite , 2003 .

[49]  Roberto Dovesi,et al.  The calculation of static polarizabilities of 1‐3D periodic compounds. the implementation in the crystal code , 2008, J. Comput. Chem..

[50]  R. Howie,et al.  Rock-forming minerals , 1962 .

[51]  Peter Blaha,et al.  Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides , 2006 .

[52]  Robert M. Hazen,et al.  Effects of temperature and pressure on the crystal structure of forsterite , 1976 .

[53]  Roberto Dovesi,et al.  Well localized crystalline orbitals obtained from Bloch functions: The case of KNbO 3 , 2001 .

[54]  A. Walker,et al.  Computer modelling of the energies and vibrational properties of hydroxyl groups in α- and β-Mg2SiO4 , 2006 .

[55]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[56]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[57]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[58]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[59]  Georg Kresse,et al.  Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids. , 2007, The Journal of chemical physics.

[60]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[61]  Peter Blaha,et al.  Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional , 2007 .

[62]  Analytical Hartree-Fock gradients for periodic systems , 2000, cond-mat/0011285.

[63]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[64]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[65]  J. Tse,et al.  Vibrational dynamics in H+-substituted forsterite: A first-principles molecular dynamics study , 2007 .

[66]  A. Tsuchiyama,et al.  Low-temperature single crystal reflection spectra of forsterite , 2006 .

[67]  Li Li,et al.  Vibrational and thermodynamic properties of forsterite at mantle conditions , 2007 .

[68]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[69]  C. Geiger,et al.  A Raman spectroscopic study of Fe–Mg olivines , 2004 .

[70]  R. Orlando,et al.  Ab initioquantum-mechanical simulation of the Raman spectrum of grossular , 2009 .