Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms

We discuss the relationship between quaternion algebras and quadratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 ×2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras among algebras of rank 4, computation of the Hilbert symbol, and computation of maximal orders.

[1]  Carsten Friedrichs Berechnung von Maximalordnungen über Dedekindringen , 2001 .

[2]  M. Pohst Computational Algebraic Number Theory , 1993 .

[3]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[4]  M. Carral,et al.  Quadratic and λ-hermitian forms , 1989 .

[5]  Denis Simon,et al.  Solving quadratic equations using reduced unimodular quadratic forms , 2005, Math. Comput..

[6]  H. Lenstra Computing Jacobi symbols in algebraic number fields , 1995 .

[7]  O. O’Meara Introduction to quadratic forms , 1965 .

[8]  H. Lenstra,et al.  Algorithms in algebraic number theory , 1992, math/9204234.

[9]  M. Vignéras Arithmétique des Algèbres de Quaternions , 1980 .

[10]  Lajos Rónyai,et al.  Simple algebras are difficult , 1987, STOC.

[11]  Florian Hess,et al.  Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..

[12]  Christiaan E. van de Woestijne,et al.  Deterministic equation solving over finite fields , 2005, ISSAC.

[13]  G. Nebe,et al.  Recognition of division algebras , 2009 .

[14]  Lajos Rónyai,et al.  Zero Divisors in Quaternion Algebras , 1988, J. Algorithms.

[15]  Hendrik W. Lenstra,et al.  Quadratic forms and quaternion algebras: algorithms and arithmetic , 2005 .

[16]  N. Jacobson Finite-dimensional division algebras over fields , 1996 .

[17]  John Cremona,et al.  Efficient solution of rational conics , 2003, Math. Comput..

[18]  L. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[19]  J. Voight Rings of low rank with a standard involution , 2009, 1003.3512.

[20]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[21]  M. Knus Quadratic forms, clifford algebras and spinors , 1988 .

[22]  Lajos Rónyai,et al.  Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.

[23]  J. Voight Characterizing quaternion rings over an arbitrary base , 2009, 0904.4310.

[24]  W. B.,et al.  Algebras and their Arithmetics , 1924, Nature.

[25]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[27]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[28]  Viggo Stoltenberg-Hansen,et al.  Computable Rings and Fields , 1999, Handbook of Computability Theory.

[29]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[30]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[31]  Markus Kirschmer,et al.  Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..

[32]  Gábor Ivanyos,et al.  Lattice basis reduction for indefinite forms and an application , 1996, Discret. Math..

[33]  H. Davenport Multiplicative Number Theory , 1967 .

[34]  Lajos Rónyai,et al.  Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.

[35]  T. Browning,et al.  Local Fields , 2008 .

[36]  Lajos Rónyai,et al.  Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..

[37]  J. Neukirch Algebraic Number Theory , 1999 .

[38]  Jean-Pierre Tignol,et al.  The Book of Involutions , 1998 .

[39]  H. W. Lenstra,et al.  Approximatting rings of integers in number fields. , 1994 .