Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms
暂无分享,去创建一个
[1] Carsten Friedrichs. Berechnung von Maximalordnungen über Dedekindringen , 2001 .
[2] M. Pohst. Computational Algebraic Number Theory , 1993 .
[3] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[4] M. Carral,et al. Quadratic and λ-hermitian forms , 1989 .
[5] Denis Simon,et al. Solving quadratic equations using reduced unimodular quadratic forms , 2005, Math. Comput..
[6] H. Lenstra. Computing Jacobi symbols in algebraic number fields , 1995 .
[7] O. O’Meara. Introduction to quadratic forms , 1965 .
[8] H. Lenstra,et al. Algorithms in algebraic number theory , 1992, math/9204234.
[9] M. Vignéras. Arithmétique des Algèbres de Quaternions , 1980 .
[10] Lajos Rónyai,et al. Simple algebras are difficult , 1987, STOC.
[11] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[12] Christiaan E. van de Woestijne,et al. Deterministic equation solving over finite fields , 2005, ISSAC.
[13] G. Nebe,et al. Recognition of division algebras , 2009 .
[14] Lajos Rónyai,et al. Zero Divisors in Quaternion Algebras , 1988, J. Algorithms.
[15] Hendrik W. Lenstra,et al. Quadratic forms and quaternion algebras: algorithms and arithmetic , 2005 .
[16] N. Jacobson. Finite-dimensional division algebras over fields , 1996 .
[17] John Cremona,et al. Efficient solution of rational conics , 2003, Math. Comput..
[18] L. Adleman,et al. On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[19] J. Voight. Rings of low rank with a standard involution , 2009, 1003.3512.
[20] Tsit Yuen Lam,et al. A first course in noncommutative rings , 2002 .
[21] M. Knus. Quadratic forms, clifford algebras and spinors , 1988 .
[22] Lajos Rónyai,et al. Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.
[23] J. Voight. Characterizing quaternion rings over an arbitrary base , 2009, 0904.4310.
[24] W. B.,et al. Algebras and their Arithmetics , 1924, Nature.
[25] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[26] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[27] Manindra Agrawal,et al. PRIMES is in P , 2004 .
[28] Viggo Stoltenberg-Hansen,et al. Computable Rings and Fields , 1999, Handbook of Computability Theory.
[29] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[30] Michael Pohst,et al. Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.
[31] Markus Kirschmer,et al. Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..
[32] Gábor Ivanyos,et al. Lattice basis reduction for indefinite forms and an application , 1996, Discret. Math..
[33] H. Davenport. Multiplicative Number Theory , 1967 .
[34] Lajos Rónyai,et al. Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.
[35] T. Browning,et al. Local Fields , 2008 .
[36] Lajos Rónyai,et al. Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..
[37] J. Neukirch. Algebraic Number Theory , 1999 .
[38] Jean-Pierre Tignol,et al. The Book of Involutions , 1998 .
[39] H. W. Lenstra,et al. Approximatting rings of integers in number fields. , 1994 .