Integration of CO2 Capture and Mineral Carbonation by Using Recyclable Ammonium Salts

A new approach to capture and store CO2 by mineral carbonation using recyclable ammonium salts was studied. This process integrates CO2 capture with mineral carbonation by employing NH3, NH4HSO4, and NH4HCO3 in the capture, mineral dissolution, and carbonation steps, respectively. NH4HSO4 and NH3 can then be regenerated by thermal decomposition of (NH4)2SO4. The use of NH4HCO3 as the source of CO2 can avoid desorption and compression of CO2. The mass ratio of Mg/NH4HCO3/NH3 is the key factor controlling carbonation and the optimum ratio of 1:4:2 gives a conversion of Mg ions to hydromagnesite of 95.5 %. Thermogravimetric analysis studies indicated that the regeneration efficiency of NH4HSO4 and NH3 in this process is 95 %. The mass balance of the process shows that about 2.63 tonnes of serpentine, 0.12 tonnes of NH4HSO4, 7.48 tonnes of NH4HCO3, and 0.04 tonnes of NH3 are required to sequester 1 tonne of CO2 as hydromagnesite.

[1]  M. Maroto-Valer,et al.  Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation , 2011 .

[2]  Laurent Trenty,et al.  A benchmark study on problems related to CO2 storage in geologic formations , 2009 .

[3]  Klaus S. Lackner,et al.  Enhancing process kinetics for mineral carbon sequestration , 2009 .

[4]  Ron Zevenhoven,et al.  Carbonation of magnesium silicate mineral using a pressurised gas/solid process , 2009 .

[5]  Carl-Johan Fogelholm,et al.  Fixation of carbon dioxide by producing hydromagnesite from serpentinite , 2009 .

[6]  Chang Hyun Ko,et al.  Characteristics of CO2 Absorption into Aqueous Ammonia , 2008 .

[7]  M. Mazzotti,et al.  Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure , 2008 .

[8]  R. Kuusik,et al.  Production of magnesium carbonates from serpentinite for long-term storage of CO2 , 2007 .

[9]  R. Zevenhoven,et al.  Dissolution of natural serpentinite in mineral and organic acids , 2007 .

[10]  S. Gerdemann,et al.  Ex situ aqueous mineral carbonation. , 2007, Environmental science & technology.

[11]  Geert-Jan Witkamp,et al.  Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process , 2006 .

[12]  M. Mercedes Maroto-Valer,et al.  Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration , 2005 .

[13]  Liang-Shih Fan,et al.  CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process , 2004 .

[14]  Klaus S. Lackner,et al.  Carbon Dioxide Sequestering Using Ultramafic Rocks , 1998 .

[15]  N. W. Lanfredi,et al.  HP 67/97 calculator waves application programs , 1987 .

[16]  Joel J. P. C. Rodrigues,et al.  Fuel Process. Technol. , 2005 .

[17]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[18]  P. Esposito,et al.  Education & Outreach Programs: Important Factors in Sequestration's Future A Presentation for the Second Annual Conference on Carbon Sequestration , 2003 .

[19]  K. Lackner,et al.  From low to no emissions , 2000 .

[20]  John R. Neuenswander Modern power systems , 1971 .