Learning wind fields with multiple kernels

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.

[1]  Luís Frölén Ribeiro,et al.  Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain , 2008 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[3]  Mikhail Kanevski Advanced Mapping of Environmental Data , 2008 .

[4]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[5]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[6]  Mikhail F. Kanevski,et al.  Multiple Kernel Learning of Environmental Data. Case Study: Analysis and Mapping of Wind Fields , 2009, ICANN.

[7]  Devis Tuia,et al.  Environmental Monitoring Network Characterization and Clustering , 2010 .

[8]  Erik Lundtang Petersen,et al.  Wind power meteorology. Part I: climate and turbulence , 1998 .

[9]  Lars Landberg,et al.  Wind Power Meteorology , 1997 .

[10]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[11]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[12]  G. Liston,et al.  A meteorological distribution system for high-resolution terrestrial modeling (MicroMet) , 2004 .

[13]  Alexei Pozdnoukhov,et al.  Multi-scale support vector algorithms for hot spot detection and modelling , 2008 .

[14]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[15]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[16]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[17]  John B. Lindsay,et al.  Modelling Channelling and Deflection of Wind by Topography , 2008 .

[18]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Mark J. F. Gales,et al.  Multiple kernel learning for speaker verification , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[20]  Ethem Alpaydin,et al.  Localized multiple kernel learning , 2008, ICML '08.

[21]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[22]  Angel R. Martinez,et al.  : Exploratory data analysis with MATLAB ® , 2007 .

[23]  Lars Landberg,et al.  Wind power meteorology. Part II: siting and models , 1998 .

[24]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[25]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[26]  Martin Mork,et al.  Topographic effects in stratified flows resolved by a spectral method , 1993 .

[27]  Gustavo Camps-Valls,et al.  Learning Relevant Image Features With Multiple-Kernel Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[28]  William Stafford Noble,et al.  Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure , 2006, Bioinform..

[29]  G. Cirrincione,et al.  Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor , 2010 .

[30]  R. Freund Solution Methods for Quadratic Optimization , 2002 .

[31]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[32]  Jake Badger,et al.  Wind Resource Estimation—An Overview , 2003 .

[33]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[34]  Gunnar Rätsch,et al.  Learning Interpretable SVMs for Biological Sequence Classification , 2005, BMC Bioinformatics.

[35]  Alexei Pozdnoukhov,et al.  Data-driven topo-climatic mapping with machine learning methods , 2009 .

[36]  Karl J. Eidsvik,et al.  A Prediction System for Local Wind Variations in Mountainous Terrain , 2004 .

[37]  C. Whiteman Mountain Meteorology: Fundamentals and Applications , 2000 .

[38]  Devis Tuia,et al.  Extreme Precipitation Modelling Using Geostatistics and Machine Learning Algorithms , 2010 .

[39]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[40]  Cheng Soon Ong,et al.  Multiclass multiple kernel learning , 2007, ICML '07.

[41]  Karl J. Eidsvik,et al.  A system for wind power estimation in mountainous terrain. Prediction of Askervein hill data , 2005 .

[42]  K. Ayotte Computational modelling for wind energy assessment , 2008 .

[43]  Mikhail Kanevski,et al.  Machine learning algorithms for spatial data analysis and modelling , 2007 .

[44]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[45]  Giansalvo Cirrincione,et al.  Wind speed spatial estimation for energy planning in Sicily: A neural kriging application , 2008 .

[46]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[47]  N. Mortensen,et al.  The numerical wind atlas - the KAMM/WAsP method , 2001 .

[48]  Peter A. Coppin,et al.  A Simple Temporal and Spatial Analysis of Flow in Complex Terrain in the Context of Wind Energy Modelling , 2001 .

[49]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[50]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[51]  Nello Cristianini,et al.  A statistical framework for genomic data fusion , 2004, Bioinform..