Borylene complexes (BH)L2 and nitrogen cation complexes (N+)L2: isoelectronic homologues of carbones CL2.
暂无分享,去创建一个
Gernot Frenking | Rebecca Sure | Rei Kinjo | Guy Bertrand | G. Frenking | G. Bertrand | Susan J. Klein | Mehmet Ali Celik | Susanne Klein | Rebecca Sure | Rei Kinjo | M. A. Celik | M. A. Çeli̇k
[1] Ralf Tonner,et al. Carbodicarbenes—divalent carbon(0) compounds exhibiting carbon–carbon donor–acceptor bonds , 2011 .
[2] W. Thiel,et al. Synthesis, structure, and reactivity of a dihydrido borenium cation. , 2011, Angewandte Chemie.
[3] W. Thiel,et al. Synthese, Struktur und Reaktivität eines Dihydridoboreniumkations† , 2011 .
[4] G. Frenking,et al. Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines , 2011, Science.
[5] Dhilon S. Patel,et al. Divalent N(I) compounds with two lone pairs on nitrogen. , 2011, The journal of physical chemistry. A.
[6] Philipp Bissinger,et al. Selektive Generierung und Abfangreaktion eines NHC-stabilisierten B-H-Borylens† , 2011 .
[7] T. Kupfer,et al. Trapping the elusive parent borylene. , 2011, Angewandte Chemie.
[8] G. Frenking,et al. Divalent Pb(0) compounds , 2011 .
[9] Mohand Melaimi,et al. Stabile cyclische Carbene und verwandte Spezies jenseits der Diaminocarbene , 2010 .
[10] G. Bertrand,et al. Stable cyclic carbenes and related species beyond diaminocarbenes. , 2010, Angewandte Chemie.
[11] G. Frenking,et al. Carbodicarbenes and related divalent carbon(0) compounds. , 2010, Chemistry.
[12] W. Thiel,et al. Synthese und Koordinationseigenschaften von Stickstoff(I)‐ Liganden , 2010 .
[13] W. Thiel,et al. Synthesis and coordination properties of nitrogen(I)-based ligands. , 2010, Angewandte Chemie.
[14] I. Císařová,et al. New lipophilic 2-amino-N,N'-dialkyl-4,5-dimethylimidazolium cations: synthesis, structure, properties, and outstanding thermal stability in alkaline media. , 2009, Chemistry.
[15] Gernot Frenking,et al. Divalent E(0) compounds (E = Si-Sn). , 2009, Chemistry.
[16] G. Frenking,et al. Exocyclic delocalization at the expense of aromaticity in 3,5-bis(pi-donor) substituted pyrazolium ions and corresponding cyclic bent allenes. , 2009, Journal of the American Chemical Society.
[17] G. Bertrand,et al. Synthesis of a simplified version of stable bulky and rigid cyclic (alkyl)(amino)carbenes, and catalytic activity of the ensuing gold(I) complex in the three-component preparation of 1,2-dihydroquinoline derivatives. , 2009, Journal of the American Chemical Society.
[18] G. Frenking,et al. Synthesis and ligand properties of a persistent, all-carbon four-membered-ring allene. , 2009, Angewandte Chemie.
[19] Gernot Frenking,et al. Divalent silicon(0) compounds. , 2009, Chemistry.
[20] Artur Michalak,et al. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.
[21] Dhilon S. Patel,et al. Novel (+)N(<--L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. , 2009, Chemical communications.
[22] Ralf Tonner,et al. Divalent carbon(0) compounds , 2009 .
[23] M. Straka,et al. Theoretical mapping of new L-(N+)-L family of species with donor-acceptor bonding between N+ and ligand L , 2008 .
[24] G. Frenking,et al. First and second proton affinities of carbon bases. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.
[25] G. Bertrand,et al. Synthesis and ligand properties of stable five-membered-ring allenes containing only second-row elements. , 2008, Angewandte Chemie.
[26] G. Bertrand,et al. Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand. , 2008, Angewandte Chemie.
[27] A. Fürstner,et al. Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.
[28] G. Frenking,et al. Divalent carbon(0) chemistry, part 1: Parent compounds. , 2008, Chemistry.
[29] Ralf Tonner,et al. Divalent carbon(0) chemistry, part 2: Protonation and complexes with main group and transition metal Lewis acids. , 2008, Chemistry.
[30] Artur Michalak,et al. Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules , 2008, Journal of molecular modeling.
[31] Artur Michalak,et al. Bond orbitals from chemical valence theory. , 2008, The journal of physical chemistry. A.
[32] G. Frenking,et al. C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften , 2007 .
[33] G. Frenking,et al. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. , 2007, Angewandte Chemie.
[34] Artur Michalak,et al. Donor–Acceptor Properties of Ligands from the Natural Orbitals for Chemical Valence , 2007 .
[35] Rian D. Dewhurst,et al. Intramolecular "hydroiminiumation" of alkenes: application to the synthesis of conjugate acids of cyclic alkyl amino carbenes (CAACs). , 2007, Angewandte Chemie.
[36] Jiří Čížek,et al. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules , 2007 .
[37] Artur Michalak,et al. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes , 2007, Journal of molecular modeling.
[38] E. Baerends,et al. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .
[39] G. Frenking,et al. Orbital overlap and chemical bonding. , 2006, Chemistry.
[40] Ralf Tonner,et al. Carbodiphosphoranes: the chemistry of divalent carbon(0). , 2006, Angewandte Chemie.
[41] G. Frenking,et al. Carbodiphosphorane: die Chemie von zweibindigem Kohlenstoff(0) , 2006 .
[42] G. Frenking,et al. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. , 2006, Chemistry.
[43] F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.
[44] Donald G Truhlar,et al. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.
[45] G. Bertrand,et al. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. , 2005, Angewandte Chemie.
[46] F. Weigend,et al. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.
[47] S. Grimme. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. , 2005, The journal of physical chemistry. A.
[48] G. Frenking,et al. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. , 2005, Chemistry.
[49] Erik Van Lenthe,et al. Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..
[50] S. Grimme. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .
[51] G. Frenking,et al. Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆ , 2003 .
[52] T. Iwamoto,et al. A stable silicon-based allene analogue with a formally sp-hybridized silicon atom , 2003, Nature.
[53] G. Frenking,et al. Nature of the Metal−Ligand Bond in M(CO)5PX3 Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, Molecular Structure, and Quantum-Chemical Calculations , 2002 .
[54] Ioannis S. K. Kerkines,et al. On the Bonding Nature of the N5+(=N(N2)2+) Cation and Related Species N(CO)x+, N(NH3)x+, and NRx+, x = 1, 2 and R = He, Ne, Ar, Kr. Do We Really Need the Resonance Concept? , 2002 .
[55] G. Frenking,et al. The Dewar-chatt-Duncanson bonding model of transition metal-olefin complexes examined by modern quantum chemical methods , 2002 .
[56] Gernot Frenking,et al. Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond ☆ , 2001 .
[57] F. Matthias Bickelhaupt,et al. Chemistry with ADF , 2001, J. Comput. Chem..
[58] R. Ponec,et al. On the nature of bonding in N 5 + ion , 2001 .
[59] B. Roos,et al. A theoretical study of the nitrogen clusters formed from the ions N3 - , N5 + , and N5 - , 2001 .
[60] R. Bartlett,et al. Possible Products of the End-On Addition of N3- to N5+ and Their Stability , 2001 .
[61] K. Christe,et al. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. , 2001, Journal of the American Chemical Society.
[62] M. Nguyen,et al. Decomposition mechanism of the polynitrogen N5 and N6 clusters and their ions , 2001 .
[63] Li Jie Wang,et al. A Quantum Chemical Theoretical Study of Decomposition Pathways of N9 (C2v) and N9+ (C2v) Clusters , 2001 .
[64] S. Chien,et al. An isomeric study of N5+, N5, and N5−: a Gaussian-3 investigation , 2000 .
[65] J. Koput. An ab initio study on the equilibrium structure and CCC bending energy levels of carbon suboxide , 2000 .
[66] M. Nguyen,et al. Theoretical study of the pentanitrogen cation (N5 , 2000 .
[67] Wenguo Xu,et al. Ab initio and density functional theory study of the mechanism of synthesis of the N5+ cation , 1999 .
[68] Bernhardi,et al. Isolation and Structure of the OCNCO(+) Ion. , 1999, Angewandte Chemie.
[69] K. O. Christe,et al. N5+: ein neuartiges homoleptisches Polystickstoff‐Ion als Substanz mit hoher Energiedichte , 1999 .
[70] Holger Patzelt,et al. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .
[71] G. Frenking,et al. Transition Metal Coordinated Al(X)L2 and Ga(X)L2 Fragments , 1998 .
[72] F. Weigend,et al. RI-MP2: first derivatives and global consistency , 1997 .
[73] Gernot Frenking,et al. The bonding of acetylene and ethylene in high-valent and low-valent transition metal compounds , 1996 .
[74] M. Frisch,et al. Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..
[75] Gernot Frenking,et al. Theoretical Studies of Organometallic Compounds. XIX. Complexes of Transition Metals in High and Low Oxidation States with Side-On-Bonded .pi.-Ligands , 1995 .
[76] Marco Häser,et al. Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .
[77] G. Frenking,et al. Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2 , 1994 .
[78] J. Gal,et al. Superbases in the gas phase: Amidine and guanidine derivatives with proton affinities larger than 1000 kj mol−1 , 1993 .
[79] Hans W. Horn,et al. Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .
[80] Hans W. Horn,et al. ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .
[81] M. Head‐Gordon,et al. A fifth-order perturbation comparison of electron correlation theories , 1989 .
[82] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[83] L. Curtiss,et al. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .
[84] J. Sotiropoulos,et al. Synthesis and reactivity of diazomethylenephosphoranes (P=C=N2). New phosphacumulene ylides and first stable pseudo-unsaturated diazo derivatives , 1987 .
[85] R. Bartlett,et al. The full CCSDT model for molecular electronic structure , 1987 .
[86] P. Jensen,et al. The infrared spectrum of carbon suboxide in the ν6 fundamental region: Experimental observation and semirigid bender analysis , 1986 .
[87] J. Perdew,et al. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.
[88] R. Bartlett,et al. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .
[89] J. Zink,et al. Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane , 1978 .
[90] Rodney J. Bartlett,et al. Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .
[91] J. S. Binkley,et al. Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .
[92] J. Pople,et al. Møller–Plesset theory for atomic ground state energies , 1975 .
[93] Keiji Morokuma,et al. Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .
[94] J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .
[95] M. Plesset,et al. Note on an Approximation Treatment for Many-Electron Systems , 1934 .
[96] Pekka Pyykkö,et al. Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.
[97] Takeaki Iwamoto,et al. Trigermaallene and 1,3-Digermasilaallene , 2005 .
[98] G. Frenking,et al. The nature of the chemical bond in the light of an energy decomposition analysis , 2005 .
[99] A. Ellern,et al. The Structure of Carbon Suboxide, C3O2, in the Solid State , 2001 .
[100] P. J. Wheatley,et al. Structure of triphenylphosphoranylideneketen , 1966 .