Nanohybrid of titania/carbon nanotubes – nanohorns: A promising photocatalyst for enhanced hydrogen production under solar irradiation

[1]  J. S. Lee,et al.  CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation , 2014 .

[2]  Shih‐Yuan Lu,et al.  Cu2O‐Decorated Mesoporous TiO2 Beads as a Highly Efficient Photocatalyst for Hydrogen Production , 2014 .

[3]  Yi‐Jun Xu,et al.  Selective photoredox using graphene-based composite photocatalysts. , 2013, Physical chemistry chemical physics : PCCP.

[4]  K. Domen,et al.  Core/Shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. , 2013, Angewandte Chemie.

[5]  D. Praveen Kumar,et al.  Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation. , 2013, Chemical communications.

[6]  M. Subrahmanyam,et al.  Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation , 2013 .

[7]  W. Shen,et al.  Silicon nanowire array/Cu2O crystalline core–shell nanosystem for solar-driven photocatalytic water splitting , 2013, Nanotechnology.

[8]  S. Chuang,et al.  Role of Methanol Sacrificing Reagent in the Photocatalytic Evolution of Hydrogen , 2013 .

[9]  Peter Gölitz,et al.  Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .

[10]  N. Zhang,et al.  Recent progress on graphene-based photocatalysts: current status and future perspectives. , 2012, Nanoscale.

[11]  Haixin Chang,et al.  Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting , 2012 .

[12]  V. Radhakrishnan,et al.  Enhanced mechanical and electrochemical durability of multistage PTFE treated gas diffusion layers for proton exchange membrane fuel cells , 2012 .

[13]  Bo-Hye Kim,et al.  TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis , 2012 .

[14]  Chao Song,et al.  Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365nm UV irradiation. , 2012, Chemosphere.

[15]  V. Radhakrishnan,et al.  Effect of GDL compression on pressure drop and pressure distribution in PEMFC flow field , 2011 .

[16]  René Kizek,et al.  Methods for carbon nanotubes synthesis—review , 2011 .

[17]  M. Bowker,et al.  New insights into the mechanism of photocatalytic reforming on Pd/TiO2 , 2011 .

[18]  Christopher G. Rylander,et al.  Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns. , 2011, Journal of biomedical optics.

[19]  P. Haridoss,et al.  Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design , 2011 .

[20]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[21]  Xianzhi Fu,et al.  TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? , 2010, ACS nano.

[22]  M. Subrahmanyam,et al.  Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures , 2010 .

[23]  Xianzhi Fu,et al.  New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange , 2010 .

[24]  N. Keller,et al.  Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion , 2010 .

[25]  Jinhua Ye,et al.  Inorganic alkaline-sols as precursors for rapid synthesis of ETS-10 microporous titanosilicates and their photocatalytic reforming of methanol under visible-light irradiation , 2009 .

[26]  M. Yudasaka,et al.  Efficient production of H2 and carbon nanotube from CH4 over single wall carbon nanohorn , 2009 .

[27]  D. I. Kondarides,et al.  Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions , 2009 .

[28]  Bingqing Wei,et al.  Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation , 2009, Nanotechnology.

[29]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[30]  Hui-Ming Cheng,et al.  Purification of carbon nanotubes , 2008 .

[31]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[32]  Y. Kusumoto,et al.  Carbon nanotubes synergistically enhance photocatalytic activity of TiO2 , 2008 .

[33]  Wanhong Ma,et al.  Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation , 2007 .

[34]  Jingdong Lin,et al.  MWNT-TiO2:Ni composite catalyst : A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination , 2006 .

[35]  M. Toyoda,et al.  Cyclic Performance of Carbon-Coated TiO2 for Photocatalytic Activity of Methylene Blue Decomposition , 2006, Environmental technology.

[36]  Jiaguo Yu,et al.  Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes , 2005 .

[37]  P. Serp,et al.  Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method , 2005 .

[38]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[39]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[40]  W. Maier,et al.  Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst , 2001 .

[41]  Fangbai Li,et al.  Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment , 2001 .

[42]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[43]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .