Parameter estimation of Lindley distribution with hybrid censored data

This study deals with the classical and Bayesian analysis of the hybrid censored lifetime data under the assumption that the lifetime follow Lindley distribution. In classical set up, the maximum likelihood estimate of the parameter with its standard error are computed. Further, by assuming Jeffrey’s invariant and gamma priors of the unknown parameter, Bayes estimate along with its posterior standard error and highest posterior density credible intervals of the parameter are obtained. Markov Chain Monte Carlo technique such as Metropolis–Hastings algorithm has been utilized to generate draws from the posterior density of the parameter. A real data set representing the waiting time of the bank customers has been analyzed for illustration purpose. A comparison study is conducted to judge the performance of the classical and Bayesian estimation procedure.

[1]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[2]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[3]  Shuo-Jye Wu,et al.  Inference in the Pareto distribution based on progressive Type II censoring with random removals , 2003 .

[4]  E. Cramer Balakrishnan, Narayanaswamy ; Aggarwala, Rita: Progressive censoring : theory, methods, and applications / N. Balakrishnan ; Rita Aggarwala. - Boston ; Basel ; Berlin, 2000 , 2000 .

[5]  Emilio Gómez-Déniz,et al.  The discrete Lindley distribution: properties and applications , 2011 .

[6]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[7]  Debasis Kundu,et al.  Parameter estimation of the hybrid censored log-normal distribution , 2011 .

[8]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[9]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[10]  Kapil Kumar,et al.  Reliability estimation in Lindley distribution with progressively type II right censored sample , 2011, Math. Comput. Simul..

[11]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[12]  Jorge Alberto Achcar,et al.  The Lindley distribution applied to competing risks lifetime data , 2011, Comput. Methods Programs Biomed..

[13]  Debasis Kundu,et al.  Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring , 2012 .

[14]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[15]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[16]  M. E. Ghitany,et al.  Lindley distribution and its application , 2008, Math. Comput. Simul..

[17]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[18]  Debasis Kundu,et al.  Estimating the Parameters of the Generalized Exponential Distribution in Presence of Hybrid Censoring , 2009 .

[19]  Bhupendra Singh,et al.  Load-sharing system model and its application to the real data set , 2012, Math. Comput. Simul..

[20]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .