Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake

Novel porous aromatic frameworks, PAF-18-OH and its lithiated derivative PAF-18-OLi, have been successfully synthesized. In particular, PAF-18-OLi displays significant enhancement of H2 and CO2 adsorption capacity, especially for CO2 uptake (14.4 wt%). More valuably, the stable PAF-18-OLi material exhibits high CO2/N2 selectivity, as high as 129 in the case of CO2 capture from simulated post-combustion flue gas mixtures (85% N2 and 15% CO2). Furthermore, the PAF-18-OLi has shown improved H2 storage capacity after lithiation.

[1]  S. Qiu,et al.  Porous coordination polymers with zeolite topologies constructed from 4-connected building units. , 2006, Dalton transactions.

[2]  Bingbing Liu,et al.  Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. , 2010, Chemical communications.

[3]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[4]  Rajamani Krishna,et al.  Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. , 2011, Journal of the American Chemical Society.

[5]  J. Kang,et al.  Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage , 2008 .

[6]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[7]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[8]  Yan Zhuojun,et al.  Designed Synthesis and Characterization of Novel Germanium Centered Porous Aromatic Frameworks (Ge-PAFs) , 2012 .

[9]  D. Theodorou,et al.  Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations. , 2006, The journal of physical chemistry. B.

[10]  J. Hupp,et al.  Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. , 2005, Inorganic chemistry.

[11]  M. Hartmann,et al.  Lithiumdotierung eines hydroxymodifizierten MIL‐53‐Strukturanalogons zur Verbesserung der Wasserstoffadsorption , 2009 .

[12]  Hong-Cai Zhou,et al.  Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[13]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[14]  Mohamed Eddaoudi,et al.  The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. , 2012, Chemical communications.

[15]  Thea M. Wilson,et al.  Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[16]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[17]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[18]  Chang-Ha Lee,et al.  Kinetic Separation of Landfill Gas by a Two-Bed Pressure Swing Adsorption Process Packed with Carbon Molecular Sieve: Nonisothermal Operation , 2006 .

[19]  D. Jiang,et al.  Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. , 2010, Journal of the American Chemical Society.

[20]  A. J. Blake,et al.  Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. , 2008, Chemical communications.

[21]  Huijun Zhao,et al.  Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules , 2011 .

[22]  George E. Froudakis,et al.  Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study , 2008 .

[23]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[24]  R. Noble,et al.  A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. , 2010, Angewandte Chemie.

[25]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[26]  M. Rajamathi,et al.  High selectivity in anion exchange reactions of the anionic clay, cobalt hydroxynitrate , 2011 .

[27]  G. Zhu,et al.  Targeted synthesis of micro–mesoporous hybrid material derived from octaphenylsilsesquioxane building units , 2013 .

[28]  J. Hupp,et al.  Post-synthesis alkoxide formation within metal-organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. , 2009, Journal of the American Chemical Society.

[29]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[30]  Daqiang Yuan,et al.  The current status of hydrogen storage in metal–organic frameworks—updated , 2011 .

[31]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[32]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. , 2005, Chemistry.

[33]  A. Cooper,et al.  High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice , 2010 .

[34]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[35]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  B. Smit,et al.  Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. , 2010, ACS nano.

[37]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[38]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  J. Eckert,et al.  Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H(2)-(rho-ZMOF) interaction studies. , 2009, Journal of the American Chemical Society.

[40]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[41]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[42]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[43]  M. Inagaki,et al.  Host effect on the formation of sodium-tetrahydrofuran-graphite intercalation compounds , 1995 .

[44]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[45]  A. Cooper,et al.  Microporous organic polymers for carbon dioxide capture , 2011 .

[46]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[47]  T. E. Reich,et al.  Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application , 2011 .

[48]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[49]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[50]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[51]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[52]  V. Goetz,et al.  Carbon dioxide-methane mixture adsorption on activated carbon , 2006 .

[53]  R. Lauener,et al.  Bromophloroglucinols and their methyl ethers , 1989 .

[54]  Jun Zhang,et al.  CO2 capture by adsorption: Materials and process development , 2007 .

[55]  Alexander M. Spokoyny,et al.  Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. , 2010, Chemical communications.

[56]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[57]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[58]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[59]  Huijun Zhao,et al.  Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. , 2012, Dalton transactions.

[60]  R. Clowes,et al.  Functionalized Conjugated Microporous Polymers , 2009 .

[61]  B. Militzer,et al.  Hydrogen storage in molecular clathrates. , 2007, Chemical reviews.

[62]  Martin Head-Gordon,et al.  Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. , 2006, Physical chemistry chemical physics : PCCP.

[63]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[64]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[65]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[66]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[67]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[68]  Zeng-min Shen,et al.  Adsorption separation of CH4/CO2 on mesocarbon microbeads: Experiment and modeling , 2006 .

[69]  V. Davankov,et al.  Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials , 2002 .

[70]  Steven Chu,et al.  Carbon Capture and Sequestration , 2016 .

[71]  M. Hartmann,et al.  Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. , 2009, Angewandte Chemie.

[72]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[73]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[74]  F. Tezel,et al.  Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite , 2007 .

[75]  Heping Ma,et al.  Synthesis of a porous aromatic framework for adsorbing organic pollutants application , 2011 .

[76]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[77]  Weiqiao Deng,et al.  Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.

[78]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .