A Realization of the Simplex Method Based on Triangular Decompositions
暂无分享,去创建一个
Consider the following problem of linear programming
$$Minimize\;{c_0} + {c_{ - m}}{x_{ - m}} + ... + {c_{ - 1}}{x_{ - 1}} + {c_1}{x_1} + ... + {c_n}{x_n}$$
(1.1.1a)
subject to
$${x_{ - 1}} + \sum\limits_{k = 1}^n {a{a_{ik}}{x_k} = {b_i},\;i = 1,2,...m} $$
(1.1.1b)
$${x_i}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } 0\;for\;i \in {I^ + },\;{x_i} = 0\;for\;i \in {I^0}$$
(1.1.1c)
where I + , I 0, I ± are disjoint index sets with
$${I^ + } \cup {I^0} = N: = \{ i| - m\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } i\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } - 1,\;1\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } i\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } n\} ]$$
.
[1] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[2] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[3] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[4] R. Bartels. A NUMERICAL INVESTIGATION OF THE SIMPLEX METHOD , 1968 .
[5] Gene H. Golub,et al. The simplex method of linear programming using LU decomposition , 1969, Commun. ACM.