Modeling turbulent wave-front phase as a fractional Brownian motion: a new approach.

We introduce a new, general formalism to model the turbulent wave-front phase by using fractional Brownian motion processes. Moreover, it extends results to non-Kolmogorov turbulence. In particular, generalized expressions for the Strehl ratio and the angle-of-arrival variance are obtained. These are dependent on the dynamic state of the turbulence.

[1]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[2]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[3]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[4]  D. Gavel,et al.  Tip-tilt compensation : resolution limits for ground-based telescopes using laser guide star adaptive optics , 1993 .

[5]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[6]  D. McGaughey,et al.  Statistical analysis of successive random additions for generating fractional Brownian motion , 2000 .

[7]  R. G. Buser,et al.  Interferometric Determination of the Distance Dependence of the Phase Structure Function for Near-Ground Horizontal Propagation at 6328 Å , 1971 .

[8]  William C. Danchi,et al.  Atmospheric Fluctuations: Empirical Structure Functions and Projected Performance of Future Instruments , 1992 .

[9]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[10]  Julien Borgnino,et al.  Error due to atmospheric turbulence effects on solar diameter measurements performed with an astrolabe , 1999 .

[11]  E. Ribak,et al.  Turbulence-degraded wave fronts as fractal surfaces , 1994 .

[12]  D. Pérez Propagación de luz en medios turbulentos , 2002 .

[13]  David L. Fried,et al.  Differential angle of arrival: Theory, evaluation, and measurement feasibility , 1975 .

[14]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[15]  A. Shiryayev,et al.  Quadratic covariation and an extension of Itô's formula , 1995 .

[16]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[17]  David L. Fried,et al.  Atmospheric Turbulence Optical Effects: Understanding the Adaptive-Optics Implications , 1994 .

[18]  R. Lane,et al.  Simulation of a Kolmogorov phase screen , 1992 .

[19]  P. N. Brandt,et al.  Day-time seeing statistics at Sacramento Peak observatory , 1987 .

[20]  G J Aitken,et al.  Prediction of atmospherically induced wave-front degradations. , 1992, Optics letters.

[21]  Light Propagation in Turbulent Media , 2003, physics/0307144.

[22]  Michael C. Roggemann,et al.  Characterization of atmospheric turbulence phase statistics using wave-front slope measurements , 1996 .

[23]  Laurent Decreusefond,et al.  Fractional Brownian motion: theory and applications , 1998 .

[24]  M. Sarazin,et al.  The ESO differential image motion monitor , 1990 .

[25]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  R. Elliott,et al.  A General Fractional White Noise Theory And Applications To Finance , 2003 .

[27]  A. Oppenheim,et al.  Signal processing with fractals: a wavelet-based approach , 1996 .

[28]  George J. M. Aitken,et al.  Temporal analysis of stellar wave-front-tilt data , 1997 .

[29]  Bruce E. Stribling,et al.  Laser Beam Propagation in Non-Kolmogorov Atmospheric Turbulence. , 1994 .

[30]  J. Gonglewski,et al.  Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor. , 1992, Optics letters.

[31]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[32]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[33]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[34]  Wave-front tilt power spectral density from the image motion of solar pores. , 1992, Applied optics.

[35]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[36]  A fractional Brownian motion model for the turbulent refractive index in lightwave propagation , 2003, physics/0307052.

[37]  李幼升,et al.  Ph , 1989 .

[38]  Yanqing Chen,et al.  Long Memory Processes ( 1 / f α Type) in Human Coordination , 1997 .

[39]  J C Dainty,et al.  Use of a Shack-Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum. , 1995, Optics letters.