Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.

Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.

[1]  Mark H. Ellisman,et al.  Fission and Uncoating of Synaptic Clathrin-Coated Vesicles Are Perturbed by Disruption of Interactions with the SH3 Domain of Endophilin , 2000, Neuron.

[2]  D. McCormick,et al.  Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling , 2000, The Journal of cell biology.

[3]  L. Hinrichsen,et al.  Effect of Clathrin Assembly Lymphoid Myeloid Leukemia Protein Depletion on Clathrin Coat Formation , 2005, Traffic.

[4]  T. Kirchhausen,et al.  Dynasore, a cell-permeable inhibitor of dynamin. , 2006, Developmental cell.

[5]  P. McPherson,et al.  Two WXXF‐based motifs in NECAPs define the specificity of accessory protein binding to AP‐1 and AP‐2 , 2004, The EMBO journal.

[6]  M. A. Downs,et al.  Epsin Binds to Clathrin by Associating Directly with the Clathrin-terminal Domain , 2000, The Journal of Biological Chemistry.

[7]  S. Harrison,et al.  Structure of the PTEN-like region of auxilin, a detector of clathrin-coated vesicle budding. , 2010, Structure.

[8]  Pier Paolo Di Fiore,et al.  A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins , 2002, Nature.

[9]  M. Charlton,et al.  AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis. , 2005, Journal of neurophysiology.

[10]  Vinzenz M Unger,et al.  Membrane curvature and its generation by BAR proteins. , 2012, Trends in biochemical sciences.

[11]  Sunil Q. Mehta,et al.  Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating , 2003, Neuron.

[12]  Simon C Watkins,et al.  Epsin 1 is a Polyubiquitin‐Selective Clathrin‐Associated Sorting Protein , 2006, Traffic.

[13]  Rohit Mittal,et al.  Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. , 2007, Structure.

[14]  S. Schmid,et al.  AAK1‐Mediated μ2 Phosphorylation is Stimulated by Assembled Clathrin , 2003 .

[15]  E. Eisenberg,et al.  Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis , 2006, Journal of Cell Science.

[16]  Derek Toomre,et al.  Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages , 2006, Proceedings of the National Academy of Sciences.

[17]  F. Brodsky,et al.  A cost–benefit analysis of the physical mechanisms of membrane curvature , 2013, Nature Cell Biology.

[18]  P. Evans,et al.  Molecular Architecture and Functional Model of the Endocytic AP2 Complex , 2002, Cell.

[19]  B. Shaw On the Rocks , 1932 .

[20]  S. Bohlander,et al.  Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. , 1999, Molecular biology of the cell.

[21]  A. Hinck,et al.  Structural basis of J cochaperone binding and regulation of Hsp70. , 2007, Molecular cell.

[22]  J. Bonifacino,et al.  Adaptor-related proteins. , 2001, Current opinion in cell biology.

[23]  Alexander W Bell,et al.  Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. De Camilli,et al.  A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  David Zenisek,et al.  Coupling between Clathrin-Coated-Pit Invagination, Cortactin Recruitment, and Membrane Scission Observed in Live Cells , 2005, Cell.

[26]  W. Marshall,et al.  Analysis of Clathrin-mediated Endocytosis of Epidermal Growth Factor Receptor by RNA Interference*[boxs] , 2004, Journal of Biological Chemistry.

[27]  Sandra L Schmid,et al.  Measuring the Hierarchy of Molecular Events During Clathrin‐Mediated Endocytosis , 2011, Traffic.

[28]  R. Fletterick,et al.  Actin Binding by Hip1 (Huntingtin-interacting Protein 1) and Hip1R (Hip1-related Protein) Is Regulated by Clathrin Light Chain* , 2008, Journal of Biological Chemistry.

[29]  F. Aguet,et al.  Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating , 2010, Nature Structural &Molecular Biology.

[30]  T. Kirchhausen,et al.  Role of lipids and actin in the formation of clathrin-coated pits. , 2006, Experimental cell research.

[31]  Sharon E. Miller,et al.  A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex , 2008, Nature.

[32]  E. Jorgensen,et al.  Endophilin Is Required for Synaptic Vesicle Endocytosis by Localizing Synaptojanin , 2003, Neuron.

[33]  S. Keeney,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S5 Tables S1 and S2 References Movie S1 Fcho Proteins Are Nucleators of Clathrin-mediated Endocytosis , 2022 .

[34]  R. Sousa,et al.  Structural basis of interdomain communication in the Hsc70 chaperone. , 2005, Molecular cell.

[35]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[36]  Sandra L. Schmid,et al.  Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals , 2002, The Journal of cell biology.

[37]  D. Fremont,et al.  Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Marcus J. Taylor,et al.  A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis , 2012, PLoS biology.

[39]  B. Finlay,et al.  Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. , 2008, Nature Reviews Microbiology.

[40]  F. Dyda,et al.  Building a fission machine – structural insights into dynamin assembly and activation , 2013, Journal of Cell Science.

[41]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[42]  T. Kirchhausen,et al.  A Clathrin-binding Site in the Hinge of the 2 Chain of Mammalian AP-2 Complexes (*) , 1995, The Journal of Biological Chemistry.

[43]  S. Whelan,et al.  The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis , 2010, PLoS pathogens.

[44]  Adi Pick,et al.  Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains , 2012, Cell.

[45]  J. Hurley,et al.  Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules , 2012, The EMBO journal.

[46]  E. Eisenberg,et al.  Role of auxilin in uncoating clathrin-coated vesicles , 1995, Nature.

[47]  K. Porter,et al.  YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L , 1964, The Journal of cell biology.

[48]  Soichi Takeda,et al.  Endophilin BAR domain drives membrane curvature by two newly identified structure‐based mechanisms , 2006, The EMBO journal.

[49]  J. Luzio,et al.  Myosin VI, a new force in clathrin mediated endocytosis , 2001, FEBS letters.

[50]  J. Bonifacino,et al.  Interaction of tyrosine-based sorting signals with clathrin-associated proteins. , 1995, Science.

[51]  Z. Werb,et al.  Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin , 1982, The Journal of cell biology.

[52]  A. Ciechanover,et al.  Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  P. McPherson,et al.  Non-stoichiometric Relationship between Clathrin Heavy and Light Chains Revealed by Quantitative Comparative Proteomics of Clathrin-coated Vesicles from Brain and Liver*S , 2005, Molecular & Cellular Proteomics.

[54]  T. Kirchhausen,et al.  Clathrin domains involved in recognition by assembly protein AP-2. , 1991, The Journal of biological chemistry.

[55]  Y. Ishikawa-Brush,et al.  Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. , 2003, Biochemistry.

[56]  Christopher J. Ryan,et al.  Membrane bending by protein–protein crowding , 2012, Nature Cell Biology.

[57]  D. Perrais,et al.  A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis , 2011, Microscopy and Microanalysis.

[58]  Xiaowei Zhuang,et al.  Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system , 2010, Nature Cell Biology.

[59]  R. Lefkowitz,et al.  beta-arrestins: traffic cops of cell signaling. , 2004, Current opinion in cell biology.

[60]  D. Perrais,et al.  Dynamics of endocytic vesicle creation. , 2005, Developmental cell.

[61]  Sandra L Schmid,et al.  Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. , 2013, Developmental cell.

[62]  B. Wendland,et al.  Distinct and separable activities of the endocytic clathrin coat components Fcho1/2 and AP-2 in developmental patterning , 2012, Nature Cell Biology.

[63]  S. Harrison,et al.  Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. , 1999, Molecular cell.

[64]  Å. Engqvist-Goldstein,et al.  Actin assembly and endocytosis: from yeast to mammals. , 2003, Annual review of cell and developmental biology.

[65]  E. Ungewickell,et al.  Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin , 1996, The Journal of cell biology.

[66]  S. Harrison,et al.  Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating , 2004, Nature.

[67]  S. Schmid,et al.  Induction of mutant dynamin specifically blocks endocytic coated vesicle formation , 1994, The Journal of cell biology.

[68]  David G. Drubin,et al.  The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro , 2001, The Journal of cell biology.

[69]  F. Brodsky,et al.  Huntingtin-interacting Protein 1 (Hip1) and Hip1-related Protein (Hip1R) Bind the Conserved Sequence of Clathrin Light Chains and Thereby Influence Clathrin Assembly in Vitro and Actin Distribution in Vivo* , 2005, Journal of Biological Chemistry.

[70]  L. Traub,et al.  Interaction of Two Structurally Distinct Sequence Types with the Clathrin Terminal Domain β-Propeller* , 2001, The Journal of Biological Chemistry.

[71]  E. Ungewickell,et al.  Reconstitution of clathrin-coated bud and vesicle formation with minimal components , 2012, Nature Cell Biology.

[72]  S. Schmid,et al.  G domain dimerization controls dynamin's assembly-stimulated GTPase activity , 2010, Nature.

[73]  Aurélien Roux,et al.  Mechanics of dynamin-mediated membrane fission. , 2013, Annual review of biophysics.

[74]  Å. Engqvist-Goldstein,et al.  Clathrin Hub Expression Dissociates the Actin‐Binding Protein Hip1R from Coated Pits and Disrupts Their Alignment with the Actin Cytoskeleton , 2001, Traffic.

[75]  K. Lilley,et al.  Comparative proteomics of clathrin-coated vesicles , 2006, The Journal of cell biology.

[76]  A. Miele,et al.  Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller , 2004, Nature Structural &Molecular Biology.

[77]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[78]  Dennis C Winkler,et al.  Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. , 2013, Journal of structural biology.

[79]  T. Kirchhausen,et al.  Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. , 2012, Cell reports.

[80]  Kartik Chandran,et al.  Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits , 2004, Cell.

[81]  P. Evans,et al.  A Structural Explanation for the Binding of Multiple Ligands by the α-Adaptin Appendage Domain , 1999, Cell.

[82]  P R Evans,et al.  The structure and function of the β2‐adaptin appendage domain , 2000, The EMBO journal.

[83]  S. Schmid,et al.  A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke , 2011, Cell.

[84]  Gary S Bhumbra,et al.  Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles , 2012, The Journal of cell biology.

[85]  Joseph L. Goldstein,et al.  Coated pits, coated vesicles, and receptor-mediated endocytosis , 1979, Nature.

[86]  S. Schmid,et al.  Dynamin: functional design of a membrane fission catalyst. , 2011, Annual review of cell and developmental biology.

[87]  S. Harrison,et al.  Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Evans,et al.  A Large-Scale Conformational Change Couples Membrane Recruitment to Cargo Binding in the AP2 Clathrin Adaptor Complex , 2010, Cell.

[89]  F. Aguet,et al.  The First Five Seconds in the Life of a Clathrin-Coated Pit , 2012, Cell.

[90]  P. McPherson,et al.  SH3 domain‐dependent interactions of endophilin with amphiphysin , 1997, FEBS letters.

[91]  Peijun Zhang,et al.  Three-dimensional reconstruction of dynamin in the constricted state , 2001, Nature Cell Biology.

[92]  Colin R. Parrish,et al.  Limited Transferrin Receptor Clustering Allows Rapid Diffusion of Canine Parvovirus into Clathrin Endocytic Structures , 2012, Journal of Virology.

[93]  Harvey T. McMahon,et al.  Integrating molecular and network biology to decode endocytosis , 2007, Nature.

[94]  S. Harrison,et al.  Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. , 2007, Journal of molecular biology.

[95]  Robert J. Lefkowitz,et al.  beta-arrestins: traffic cops of cell signaling. , 2004, Current opinion in cell biology.

[96]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[97]  S. Schmid,et al.  Actin Assembly Plays a Variable, but not Obligatory Role in Receptor‐Mediated Endocytosis , 2000, Traffic.

[98]  M. Kaksonen,et al.  Endocytic accessory factors and regulation of clathrin-mediated endocytosis. , 2014, Cold Spring Harbor perspectives in biology.

[99]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[100]  W. Almers,et al.  Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits , 2002, Nature Cell Biology.

[101]  Frank Noé,et al.  Crystal structure of nucleotide-free dynamin , 2011, Nature.

[102]  O. Pylypenko,et al.  The PX‐BAR membrane‐remodeling unit of sorting nexin 9 , 2007, The EMBO journal.

[103]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[104]  L. Johannes,et al.  Bending "on the rocks"--a cocktail of biophysical modules to build endocytic pathways. , 2014, Cold Spring Harbor perspectives in biology.

[105]  T. Kirchhausen,et al.  Immunoelectron microscopic evidence for the extended conformation of light chains in clathrin trimers. , 1993, The Journal of biological chemistry.

[106]  M. Babu,et al.  Evolving nature of the AP2 α‐appendage hub during clathrin‐coated vesicle endocytosis , 2004 .

[107]  M. McNiven,et al.  The dynamins: redundant or distinct functions for an expanding family of related GTPases? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[108]  S. Harrison,et al.  Atomic Structure of Clathrin A β Propeller Terminal Domain Joins an α Zigzag Linker , 1998, Cell.

[109]  M. Mattson,et al.  Clathrin Assembly Protein AP180 and CALM Differentially Control Axogenesis and Dendrite Outgrowth in Embryonic Hippocampal Neurons , 2008, The Journal of Neuroscience.

[110]  B. Pearse Coated vesicles from pig brain: purification and biochemical characterization. , 1975, Journal of molecular biology.

[111]  Frank Noé,et al.  Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate , 2013, Nature.

[112]  S. Harrison,et al.  Crystal structure of the clathrin adaptor protein 1 core. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Kirchhausen,et al.  Stabilization of clathrin coats by the core of the clathrin-associated protein complex AP-2. , 1990, Biochemistry.

[114]  T. Kirchhausen,et al.  A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. , 2008, Molecular biology of the cell.

[115]  Guillermo Ayala,et al.  Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate , 2007, Proceedings of the National Academy of Sciences.

[116]  B. Wendland Epsins: adaptors in endocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[117]  J. Hinshaw,et al.  Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation , 1998, Cell.

[118]  S. Schmid,et al.  AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin. , 2003, Traffic.

[119]  S. Harrison,et al.  Protein organization in clathrin trimers , 1981, Cell.

[120]  L. Cantley,et al.  Regulatory interactions in the recognition of endocytic sorting signals by AP‐2 complexes , 1997, The EMBO journal.

[121]  U. Gether,et al.  Amphipathic motifs in BAR domains are essential for membrane curvature sensing , 2009, The EMBO journal.

[122]  T. Kirchhausen,et al.  Eps15 Is a Component of Clathrin-coated Pits and Vesicles and Is Located at the Rim of Coated Pits* , 1996, The Journal of Biological Chemistry.

[123]  B. Pearse,et al.  Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Keen,et al.  Deep-etch visualization of proteins involved in clathrin assembly , 1988, The Journal of cell biology.

[125]  J. Ybe,et al.  Crystal structure at 2.8 A of Huntingtin-interacting protein 1 (HIP1) coiled-coil domain reveals a charged surface suitable for HIP1 protein interactor (HIPPI). , 2008, Journal of molecular biology.

[126]  Richard G. W. Anderson,et al.  A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts , 1977, Nature.

[127]  Thomas M. Newpher,et al.  Novel function of clathrin light chain in promoting endocytic vesicle formation. , 2006, Molecular biology of the cell.

[128]  J. Bonifacino,et al.  Cargo recognition in clathrin-mediated endocytosis. , 2013, Cold Spring Harbor perspectives in biology.

[129]  D. Zajonc,et al.  Atomic structure of the autosomal recessive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail , 2012, Proceedings of the National Academy of Sciences.

[130]  S. Jenni,et al.  The crystal structure of dynamin , 2011, Nature.

[131]  P R Evans,et al.  Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. , 2001, Science.

[132]  S. Harrison,et al.  Clathrin light chains LCA and LCB are similar, polymorphic, and share repeated heptad motifs. , 1987, Science.

[133]  Emanuele Cocucci,et al.  Distinct Dynamics of Endocytic Clathrin-Coated Pits and Coated Plaques , 2009, PLoS biology.

[134]  D. Agard,et al.  Clathrin light and heavy chain interface: α‐helix binding superhelix loops via critical tryptophans , 2002, The EMBO journal.

[135]  J. Rothman,et al.  Enzymatic recycling of clathrin from coated vesicles , 1986, Cell.

[136]  S. Harrison,et al.  Structural analysis of the interaction between Dishevelled2 and clathrin AP-2 adaptor, a critical step in noncanonical Wnt signaling. , 2010, Structure.

[137]  N Grigorieff,et al.  Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors , 1998, The EMBO journal.

[138]  I. Mills,et al.  Role of the AP2 β-Appendage Hub in Recruiting Partners for Clathrin-Coated Vesicle Assembly , 2006, PLoS biology.

[139]  T. Kirchhausen Adaptors for clathrin-mediated traffic. , 1999, Annual review of cell and developmental biology.

[140]  T. Hasson Myosin VI: two distinct roles in endocytosis , 2003, Journal of Cell Science.

[141]  T. Kirchhausen Bending membranes , 2012, Nature Cell Biology.

[142]  D. Branton,et al.  Assembly units of clathrin coats , 1981, Nature.

[143]  T. Kirchhausen,et al.  Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. , 2008, Biophysical journal.

[144]  P. Camilli,et al.  A presynaptic inositol-5-phosphatase , 1996, Nature.

[145]  A. Griffin,et al.  A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating , 2006, Proceedings of the National Academy of Sciences.

[146]  S. Schmid,et al.  An intramolecular signaling element that modulates dynamin function in vitro and in vivo. , 2009, Molecular biology of the cell.

[147]  T. Galli,et al.  Role of HRB in Clathrin-dependent Endocytosis* , 2008, Journal of Biological Chemistry.

[148]  J. Hurley,et al.  Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation , 2009, The EMBO journal.

[149]  E. Ungewickell,et al.  Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. , 2000, European journal of cell biology.

[150]  P. Cossart,et al.  A Common Clathrin‐Mediated Machinery Co‐ordinates Cell–Cell Adhesion and Bacterial Internalization , 2012, Traffic.

[151]  Sharon E. Miller,et al.  The Molecular Basis for the Endocytosis of Small R-SNAREs by the Clathrin Adaptor CALM , 2011, Cell.

[152]  P. Parham,et al.  Clathrin light chains contain brain-specific insertion sequences and a region of homology with intermediate filaments , 1987, Nature.

[153]  Comert Kural,et al.  Actin dynamics counteract membrane tension during clathrin-mediated endocytosis , 2011, Nature Cell Biology.

[154]  P. Evans,et al.  A structural explanation for the recognition of tyrosine-based endocytotic signals. , 1998, Science.

[155]  P. Cossart,et al.  Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells , 2005, Nature Cell Biology.

[156]  L. Orci,et al.  Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts , 1982, The Journal of cell biology.

[157]  J. Heuser Three-dimensional visualization of coated vesicle formation in fibroblasts , 1980, The Journal of cell biology.

[158]  S. Harrison,et al.  Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly , 2009, The EMBO journal.

[159]  F. Quiocho,et al.  A Novel All Helix Fold of the AP180 Amino-Terminal Domain for Phosphoinositide Binding and Clathrin Assembly in Synaptic Vesicle Endocytosis , 2001, Cell.

[160]  Simon C Watkins,et al.  The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis. , 2008, Molecular biology of the cell.

[161]  S. Harrison,et al.  Molecular model for a complete clathrin lattice from electron cryomicroscopy , 2004, Nature.

[162]  T. Kirchhausen,et al.  Imaging endocytic clathrin structures in living cells. , 2009, Trends in cell biology.

[163]  E. Jorgensen,et al.  UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. , 1999, Molecular biology of the cell.

[164]  P. Evans,et al.  Molecular Basis for the Sorting of the SNARE VAMP7 into Endocytic Clathrin-Coated Vesicles by the ArfGAP Hrb , 2008, Cell.

[165]  A. Helenius,et al.  Endocytosis of viruses and bacteria. , 2014, Cold Spring Harbor perspectives in biology.

[166]  S. Harrison,et al.  Concentration of transferrin receptor in human placental coated vesicles , 1989, The Journal of cell biology.

[167]  J. Hirst,et al.  Adaptor Protein Complexes AP‐4 and AP‐5: New Players in Endosomal Trafficking and Progressive Spastic Paraplegia , 2013, Traffic.

[168]  H. Sondermann,et al.  Structure and plasticity of Endophilin and Sorting Nexin 9. , 2008, Structure.