Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient
暂无分享,去创建一个
[1] W. Nowacki. COUPLE STRESSES IN THE THEORY OF THERMOELASTICITY III , 1968 .
[2] Nicolas Triantafyllidis,et al. Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .
[3] R. Stojanovitch. On the stress relation in non-linear thermoelasticity , 1969 .
[4] K. S. Havner,et al. Finite Plastic Deformation of Crystalline Solids , 1992 .
[5] C. Kittel. Introduction to solid state physics , 1954 .
[6] En-Jui Lee. Elastic-Plastic Deformation at Finite Strains , 1969 .
[7] G. Johnson,et al. Decomposition of the Deformation Gradient in Thermoelasticity , 1998 .
[8] Ilya Prigogine,et al. Introduction to Thermodynamics of Irreversible Processes , 1967 .
[9] D. Whiffen. Thermodynamics , 1973, Nature.
[10] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[11] C. Truesdell,et al. The Nonlinear Field Theories in Mechanics , 1968 .
[12] N. Fleck,et al. Strain gradient plasticity , 1997 .
[13] Elias C. Aifantis,et al. The physics of plastic deformation , 1987 .
[14] V. Lubarda. Finite compression of solids: second order thermoelastic analysis , 1986 .
[15] Gerhard A. Holzapfel,et al. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .
[16] Carl Eckart,et al. The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .
[17] E. Kröner,et al. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .