DIFFUSE γ-RAY EMISSION FROM UNRESOLVED BL LAC OBJECTS

Blazars, active galactic nuclei with a jet pointing toward the Earth, represent the most abundant class of high-energy extragalactic γ-ray sources. The subset of blazars known as BL Lac objects is on average closer to Earth (i.e., younger) and characterized by harder spectra at high energy than the whole sample. The fraction of BL Lacs that is too dim to be detected and resolved by current γ-ray telescopes is therefore expected to contribute to the high-energy isotropic diffuse γ-ray background (IGRB). The IGRB has been recently measured over a wide energy range by the Large Area Telescope (LAT) on board the Gamma-ray Space Telescope (Fermi). We present a new prediction of the diffuse γ-ray flux due to the unresolved BL Lac blazar population. The model is built upon the spectral energy distribution and the luminosity function derived from the fraction of BL Lacs detected (and spectrally characterized) in the γ-ray energy range. We focus our attention on the GeV energy range, predicting the emission up to the TeV scale and taking into account the absorption on the extragalactic background light. In order to better shape the BL Lac spectral energy distribution, we combine the Fermi-LAT data with Imaging Atmospheric Cerenkov Telescope measurements of the most energetic sources. Our analysis is carried on separately for low- and intermediate-synchrotron-peaked BL Lacs on the one hand and high-synchrotron-peaked BL Lacs on the other hand: we find in fact statistically different features for the two. The diffuse emission from the sum of both BL Lac classes increases from about 10% of the measured IGRB at 100 MeV to ~100% of the data level at 100 GeV. At energies greater than 100 GeV, our predictions naturally explain the IGRB data, accommodating their softening with increasing energy. Uncertainties are estimated to be within of a factor of two of the best-fit flux up to 500 GeV.

[1]  L. Latronico,et al.  DIFFUSE γ-RAY EMISSION FROM MISALIGNED ACTIVE GALACTIC NUCLEI , 2013, 1305.4200.

[2]  G. Bonnoli,et al.  Estimating the redshift of PKS 0447−439 through its GeV–TeV emission , 2011, 1110.4038.

[3]  M. Pohl,et al.  The contribution of unresolved radio-loud AGN to the extragalactic diffuse gamma-ray background , 2000 .

[4]  F. Aharonian,et al.  TIME STRUCTURE OF GAMMA-RAY SIGNALS GENERATED IN LINE-OF-SIGHT INTERACTIONS OF COSMIC RAYS FROM DISTANT BLAZARS , 2012, 1203.3787.

[5]  P. Schady,et al.  THE COSMIC EVOLUTION OF FERMI BL LACERTAE OBJECTS , 2013, 1310.0006.

[6]  Li Zhang,et al.  Contribution from blazar cascade emission to the extragalactic gamma-ray background: what role does the extragalactic magnetic field play? , 2012, 1202.4250.

[7]  M. Boettcher,et al.  Studies of active galactic nuclei with CTA , 2012, 1208.5926.

[8]  Hajime Takami,et al.  BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS , 2011, 1107.5576.

[9]  Gino Tosti,et al.  FERMI OBSERVATIONS OF TeV-SELECTED ACTIVE GALACTIC NUCLEI , 2009 .

[10]  Anthony C. S. Readhead,et al.  SPECTROSCOPY OF BROAD-LINE BLAZARS FROM 1LAC , 2012, 1201.0999.

[11]  George W. Clark,et al.  High-energy cosmic gamma-ray observations from the OSO-3 satellite. , 1972 .

[12]  M. V. Fernandes,et al.  Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. , 2012, 1212.3409.

[13]  M. Sikora,et al.  Consequences of relativistic proton injection in active galactic nuclei , 1990 .

[14]  U. Padova,et al.  Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity , 2008, 0805.1841.

[15]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[16]  G. Henri,et al.  Gamma-ray emission of active galactic nuclei as a signature of relativistic electron-positron beams , 1993 .

[17]  F. Stecker,et al.  The gamma-ray background from blazars : a new look , 1996, astro-ph/9601120.

[18]  L. Zhang,et al.  γ-RAY LUMINOSITY FUNCTION AND THE CONTRIBUTION TO EXTRAGALACTIC γ-RAY BACKGROUND FOR FERMI-DETECTED BLAZARS , 2012 .

[19]  K. Mannheim,et al.  BL Lac Contribution to the Extragalactic Gamma-Ray Background , 2004, 0705.3778.

[20]  R. Schlickeiser Nonthermal radiation from jets of active galactic nuclei: Electrostatic bremsstrahlung as alternative to synchrotron radiation , 2003 .

[21]  D. Thompson,et al.  High energy gamma ray results from the second small astronomy satellite , 1975 .

[22]  et al,et al.  EGRET Observations of the Extragalactic Gamma-Ray Emission , 1997 .

[23]  Paolo Giommi,et al.  The Connection between X-Ray-- and Radio-selected BL Lacertae Objects , 1995 .

[24]  Robert P. Johnson,et al.  THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2010, 1002.0150.

[25]  M. V. Fonseca,et al.  SPECTRAL ENERGY DISTRIBUTION OF MARKARIAN 501: QUIESCENT STATE VERSUS EXTREME OUTBURST , 2010, 1012.2200.

[26]  Ming Zhou,et al.  A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2013, 1304.3575.

[27]  S. Razzaque,et al.  MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST , 2009, 0905.1115.

[28]  Paolo Giommi,et al.  The Deep X-Ray Radio Blazar Survey. I. Methods and First Results , 1998, astro-ph/9801024.

[29]  T. Bringmann,et al.  Constraining dark matter annihilation with the isotropic γ-ray background: Updated limits and future potential , 2013, 1303.3284.

[30]  E. Striani,et al.  FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010 .

[31]  Jean-Luc Starck,et al.  THE FERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND , 2010, 1003.0895.

[32]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[33]  R. Romani,et al.  THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS , 2011, 1110.3787.

[34]  A. Kusenko,et al.  A new interpretation of the gamma-ray observations of distant active galactic nuclei , 2009, 0905.1162.

[35]  D. Thompson,et al.  The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars , 2012, Science.

[36]  Y. Inoue CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES’ CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION , 2011, 1103.3946.

[37]  J. Stocke,et al.  HUBBLE/COS OBSERVATIONS OF THE Lyα FOREST TOWARD THE BL Lac OBJECT 1ES 1553+113 , 2010, 1005.2191.

[38]  M. V. Fernandes,et al.  Discovery of TeV gamma-ray emission from PKS 0447-439 and derivation of an upper limit on its redshift , 2013, 1303.1628.

[39]  Mark Lacy,et al.  The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples , 2000, astro-ph/0010419.

[40]  High confidence AGN candidates among unidentified Fermi-LAT sources via statistical classification , 2013, 1306.6529.

[41]  Munchen,et al.  Discovery of VHEγ-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations , 2012, Astronomy & Astrophysics.

[42]  Vlasios Vasileiou,et al.  FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG , 2011 .

[43]  A. Neronov,et al.  EXTRAGALACTIC VERY HIGH ENERGY GAMMA-RAY BACKGROUND , 2011, 1103.3484.

[44]  T. Venters,et al.  COMPONENTS OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2010, 1012.3678.

[45]  T. Totani,et al.  Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity-Dependent Density Evolution , 2006, astro-ph/0602178.

[46]  J. Chiang,et al.  GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE , 2012, The Astrophysical Journal.

[47]  T. Venters,et al.  THE EXTRAGALACTIC BACKGROUND LIGHT ABSORPTION FEATURE IN THE BLAZAR COMPONENT OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2009, 0909.1571.

[48]  et al,et al.  Fermi observations of TeV-selected AGN , 2009, 0910.4881.

[49]  P. Giommi,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF FERMI BRIGHT BLAZARS , 2009, The Astrophysical Journal.

[50]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[51]  T. Kang,et al.  EVIDENCE FOR SECONDARY EMISSION AS THE ORIGIN OF HARD SPECTRA IN TeV BLAZARS , 2013, 1609.09148.

[52]  M. Errando,et al.  GAMMA-RAY OBSERVATIONAL PROPERTIES OF TeV-DETECTED BLAZARS , 2013, 1301.3697.

[53]  T. Totani,et al.  THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY BACKGROUND RADIATION IN THE FERMI ERA , 2008, 0810.3580.

[54]  A. R. Bazer-Bachi,et al.  HESS observations and VLT spectroscopy of PG 1553+113 , 2007, 0710.5740.

[55]  J. Chiang,et al.  The Luminosity Function of the EGRET Gamma-Ray Blazars , 1998 .

[56]  J. Angel,et al.  Optical and Infrared Polarization of Active Extragalactic Objects , 1980 .

[57]  C. Dermer Statistics of Cosmological Black Hole Jet Sources: Blazar Predictions for the Gamma-Ray Large Area Space Telescope , 2007 .