Network of evolvable neural units can learn synaptic learning rules and spiking dynamics

[1]  Risto Miikkulainen,et al.  A Neuroevolution Approach to General Atari Game Playing , 2014, IEEE Transactions on Computational Intelligence and AI in Games.

[2]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[3]  Kenneth O. Stanley,et al.  ES is more than just a traditional finite-difference approximator , 2017, GECCO.

[4]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[5]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[6]  W. Gerstner,et al.  Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules , 2016, Front. Neural Circuits.

[7]  J. Wickens,et al.  Timing is not Everything: Neuromodulation Opens the STDP Gate , 2010, Front. Syn. Neurosci..

[8]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[9]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[10]  Ezequiel A. Di Paolo,et al.  Evolving spike-timing-dependent plasticity for single-trial learning in robots , 2003 .

[11]  Robert A. Legenstein,et al.  Long short-term memory and Learning-to-learn in networks of spiking neurons , 2018, NeurIPS.

[12]  Risto Miikkulainen,et al.  Designing neural networks through neuroevolution , 2019, Nat. Mach. Intell..

[13]  Nikil D. Dutt,et al.  Biologically plausible models of homeostasis and STDP: Stability and learning in spiking neural networks , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[14]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[15]  Dario Floreano,et al.  Evolving neuromodulatory topologies for reinforcement learning-like problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[17]  Jeffrey L. Krichmar,et al.  An Evolutionary Framework for Replicating Neurophysiological Data with Spiking Neural Networks , 2016, PPSN.

[18]  Dario Floreano,et al.  Exploring the T-Maze: Evolving Learning-Like Robot Behaviors Using CTRNNs , 2003, EvoWorkshops.

[19]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[20]  Jeffrey L. Krichmar,et al.  Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types , 2018, Front. Neuroinform..

[21]  T. Robinson,et al.  A selective role for dopamine in reward learning , 2010, Nature.

[22]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[23]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[24]  W. Catterall Structure and function of voltage-gated ion channels. , 1995, Annual review of biochemistry.

[25]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[26]  Nikil Dutt,et al.  An efficient automated parameter tuning framework for spiking neural networks , 2014, Front. Neurosci..

[27]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[28]  Yoshua Bengio,et al.  Dendritic cortical microcircuits approximate the backpropagation algorithm , 2018, NeurIPS.

[29]  Sylvie Renaud,et al.  Automated Parameter Estimation of the Hodgkin-Huxley Model Using the Differential Evolution Algorithm: Application to Neuromimetic Analog Integrated Circuits , 2011, Neural Computation.

[30]  Jean-Baptiste Mouret,et al.  Artificial Evolution of Plastic Neural Networks: A Few Key Concepts , 2014, Growing Adaptive Machines.

[31]  Dario Floreano,et al.  Evolution of spiking neural circuits in autonomous mobile robots , 2006, Int. J. Intell. Syst..

[32]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[33]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[34]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[35]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[36]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[37]  Sebastian Risi,et al.  Indirectly Encoding Neural Plasticity as a Pattern of Local Rules , 2010, SAB.

[38]  Dario Floreano,et al.  Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios , 2008, ALIFE.

[39]  Yoshua Bengio,et al.  On the Optimization of a Synaptic Learning Rule , 2007 .

[40]  T. Takano,et al.  Beyond the role of glutamate as a neurotransmitter , 2002, Nature Reviews Neuroscience.

[41]  Xiao-Jing Wang,et al.  Bursting Neurons Signal Input Slope , 2002, The Journal of Neuroscience.

[42]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[43]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[44]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[45]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[46]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[47]  D. McCormick,et al.  GABA as an inhibitory neurotransmitter in human cerebral cortex. , 1989, Journal of neurophysiology.

[48]  P. Greengard,et al.  Synapsins as regulators of neurotransmitter release. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[50]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[51]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.