Five methodological challenges in cognitive electrophysiology

Here we discuss five methodological challenges facing the current cognitive electrophysiology literature that address the roles of brain oscillations in cognition. The challenges focus on (1) unambiguous and consistent terminology, (2) neurophysiologically meaningful interpretations of results, (3) evaluation and comparison of different spatial filters often used in M/EEG research, (4) the role of multiscale interactions in brain and cognitive function, and (5) development of biophysically plausible cognitive models. We also suggest research directions that will help address these challenges. We hope that this paper will help foster discussions and debates about important themes in the study of how the brain's rhythmic patterns of spatiotemporal electrophysiological activity support cognition.

[1]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[2]  M. Kahana,et al.  Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse , 2012, The Journal of Neuroscience.

[3]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[4]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[5]  A. Engel,et al.  Trial-by-Trial Coupling of Concurrent Electroencephalogram and Functional Magnetic Resonance Imaging Identifies the Dynamics of Performance Monitoring , 2005, The Journal of Neuroscience.

[6]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[7]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[8]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[9]  M. Quyen,et al.  Neuronal Oscillations Scale Up and Scale Down Brain Dynamics , 2013 .

[10]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[11]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[12]  G C Galbraith,et al.  EEG correlates of visual-motor practice in man. , 1975, Electroencephalography and clinical neurophysiology.

[13]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[14]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[15]  M. Kraut,et al.  Intracortical generators of the flash VEP in monkeys. , 1985, Electroencephalography and clinical neurophysiology.

[16]  Hamid Soltanian-Zadeh,et al.  Multi-area neural mass modeling of EEG and MEG signals , 2010, NeuroImage.

[17]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[18]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[19]  Arne D. Ekstrom,et al.  Brain Oscillations Control Timing of Single-Neuron Activity in Humans , 2007, The Journal of Neuroscience.

[20]  John C. Ashton,et al.  Experimental power comes from powerful theories — the real problem in null hypothesis testing , 2013, Nature Reviews Neuroscience.

[21]  Rong Jin,et al.  Identifying Functional Connectivity in Large-Scale Neural Ensemble Recordings: A Multiscale Data Mining Approach , 2009, Neural Computation.

[22]  N. Crone,et al.  Cortical γ responses: searching high and low. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[23]  R. Eckhorn,et al.  Amplitude envelope correlation detects coupling among incoherent brain signals , 2000, Neuroreport.

[24]  G. Pfurtscheller Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. , 1992, Electroencephalography and clinical neurophysiology.

[25]  A. Scott,et al.  MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data , 2011, Neuroinformatics.

[26]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[27]  Alexa B. Roggeveen,et al.  Large-scale gamma-band phase synchronization and selective attention. , 2008, Cerebral cortex.

[28]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[29]  Robert T. Knight,et al.  Five-dimensional neuroimaging: Localization of the time–frequency dynamics of cortical activity , 2008, NeuroImage.

[30]  A. Riehle,et al.  The Local Field Potential Reflects Surplus Spike Synchrony , 2010, Cerebral cortex.

[31]  M. Quyen The brainweb of cross-scale interactions , 2011 .

[32]  P. Nunez,et al.  EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics , 2007, Journal of Neuroscience Methods.

[33]  A. Burgess Towards a Unified Understanding of Event-Related Changes in the EEG: The Firefly Model of Synchronization through Cross-Frequency Phase Modulation , 2012, PloS one.

[34]  J. Lisman,et al.  The θ-γ neural code. , 2013, Neuron.

[35]  Xiao-Jing Wang,et al.  Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas , 2010, The Journal of Neuroscience.

[36]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[37]  Ingo Bojak,et al.  Associating spontaneous with evoked activity in a neural mass model of visual cortex , 2012, NeuroImage.

[38]  A. Karim,et al.  Brain Oscillatory Substrates of Visual Short-Term Memory Capacity , 2009, Current Biology.

[39]  Jos J. Eggermont,et al.  Coupling of mesoscopic brain oscillations: Recent advances in analytical and theoretical perspectives , 2009, Progress in Neurobiology.

[40]  Paul H. E. Tiesinga,et al.  Attentional modulation of firing rate and synchrony in a model cortical network , 2005, Journal of Computational Neuroscience.

[41]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[42]  A. Coenen Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: Implications for information processing , 1995, Neuroscience & Biobehavioral Reviews.

[43]  K. R. Ridderinkhof,et al.  EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing , 2013, PloS one.

[44]  Olaf Hauk,et al.  Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data , 2004, NeuroImage.

[45]  Stefano Panzeri,et al.  Analysis of Slow (Theta) Oscillations as a Potential Temporal Reference Frame for Information Coding in Sensory Cortices , 2012, PLoS Comput. Biol..

[46]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[47]  Peter C. Hansen,et al.  MEG. An introduction to methods , 2010 .

[48]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[49]  関原 謙介,et al.  Adaptive Spatial Filters for Electromagnetic Brain Imaging , 2008 .

[50]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[51]  M. Zhadin Rhythmic processes in the cerebral cortex. , 1984, Journal of theoretical biology.

[52]  W. Singer,et al.  Oscillatory Neuronal Synchronization in Primary Visual Cortex as a Correlate of Stimulus Selection , 2002, The Journal of Neuroscience.

[53]  Tai Sing Lee,et al.  Local field potentials indicate network state and account for neuronal response variability , 2010, Journal of Computational Neuroscience.

[54]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[55]  A. Kleinschmidt,et al.  Modulation of Visually Evoked Cortical fMRI Responses by Phase of Ongoing Occipital Alpha Oscillations , 2011, The Journal of Neuroscience.

[56]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[57]  L. Abbott,et al.  Theoretical Neuroscience Rising , 2008, Neuron.

[58]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[59]  Rikkert Hindriks,et al.  Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations , 2013, NeuroImage.

[60]  E. Maby,et al.  Impact of Spatial Filters During Sensor Selection in a Visual P300 Brain-Computer Interface , 2011, Brain Topography.

[61]  G. Band,et al.  Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence , 2012, Biological Psychology.

[62]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[63]  Thomas V. Wiecki,et al.  A computational model of inhibitory control in frontal cortex and basal ganglia. , 2011, Psychological review.

[64]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[65]  Douglas O. Cheyne,et al.  Reconstruction of correlated brain activity with adaptive spatial filters in MEG , 2010, NeuroImage.

[66]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[67]  Karl J. Friston,et al.  Mechanisms of evoked and induced responses in MEG/EEG , 2006, NeuroImage.

[68]  R. LaLumiere A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic , 2011, Brain Stimulation.

[69]  John J. B. Allen,et al.  Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring , 2009, The Journal of Neuroscience.

[70]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[71]  E. Tulving Concepts of memory. , 2000 .

[72]  Michael X. Cohen,et al.  Error-related medial frontal theta activity predicts cingulate-related structural connectivity , 2011, NeuroImage.

[73]  Krish D. Singh,et al.  Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters , 2012, NeuroImage.

[74]  O Jensen,et al.  An Oscillatory Short-Term Memory Buffer Model Can Account for Data on the Sternberg Task , 1998, The Journal of Neuroscience.

[75]  Kazuyuki Aihara,et al.  Dynamical Cell Assembly Hypothesis -- Theoretical Possibility of Spatio-temporal Coding in the Cortex , 1996, Neural Networks.

[76]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[77]  R. B. Silberstein,et al.  Comparison of high resolution EEG methods having different theoretical bases , 2005, Brain Topography.

[78]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[79]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[80]  J. Lisman The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme , 2005, Hippocampus.

[81]  M. Quyen,et al.  Neuronal Oscillations Scale Up and Scale Down the Brain Dynamics Q1 , 2013 .

[82]  Terrence J. Sejnowski,et al.  Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models , 1996, Journal of Computational Neuroscience.

[83]  Thomas Dierks,et al.  Linking Brain Connectivity Across Different Time Scales with Electroencephalogram, Functional Magnetic Resonance Imaging, and Diffusion Tensor Imaging , 2012, Brain Connect..

[84]  Michael X. Cohen,et al.  Dynamic Interactions between Large-Scale Brain Networks Predict Behavioral Adaptation after Perceptual Errors , 2012, Cerebral cortex.

[85]  Nicolas Brunel,et al.  Dynamics of a recurrent network of spiking neurons before and following learning , 1997 .

[86]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[87]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[88]  Mark A. Kramer,et al.  A procedure for testing across-condition rhythmic spike-field association change , 2012, Journal of Neuroscience Methods.

[89]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[90]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[91]  O. Paulsen,et al.  Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information , 2008, The Journal of physiology.

[92]  Nicole M. Long,et al.  Human intracranial high-frequency activity maps episodic memory formation in space and time , 2014, NeuroImage.

[93]  Bijan Pesaran,et al.  Free choice activates a decision circuit between frontal and parietal cortex , 2008, Nature.

[94]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[95]  Michael X Cohen,et al.  Analyzing Neural Time Series Data: Theory and Practice , 2014 .

[96]  J. Matias Palva,et al.  Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series , 2012, NeuroImage.

[97]  R. Parenti,et al.  Expression of connexin36 mRNA in adult rodent brain , 2000, Neuroreport.

[98]  R. Knight,et al.  Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks , 2010, Front. Hum. Neurosci..

[99]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[100]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[101]  Xiao-Jing Wang Neural dynamics and circuit mechanisms of decision-making , 2012, Current Opinion in Neurobiology.

[102]  S. Makeig Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. , 1993, Electroencephalography and clinical neurophysiology.

[103]  J. Gardiner,et al.  Recognising and Remembering , 2019, Theories of Memory.

[104]  Michael Breakspear,et al.  Dynamics of a neural system with a multiscale architecture , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.