TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION

Two systems of hyperbolic equations, arising in the multiphase semiclassical limit of the linear Schrodinger equations, are investigated. One stems from a Wigner measure analysis and uses a closure by the Delta functions, whereas the other relies on the classical WKB expansion and uses the Heaviside functions for closure. The two resulting moment systems are weakly and non-strictly hyperbolic respectively. They provide two different Eulerian methods able to reproduce superimposed signals with a finite number of phases. Analytical properties of these moment systems are investigated and compared. Efficient numerical discretizations and test-cases with increasing difficulty are presented.

[1]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[2]  G. Guerra,et al.  Global BV Entropy Solutions and Uniqueness for Hyperbolic Systems of Balance Laws , 2002 .

[3]  P. Goatin ONE-SIDED ESTIMATES AND UNIQUENESS FOR HYPERBOLIC SYSTEMS OF BALANCE LAWS , 2003 .

[4]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[5]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[6]  Stanley Osher,et al.  Numerical solution of the high frequency asymptotic expansion for the scalar wave equation , 1995 .

[7]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[8]  Shi Jin,et al.  Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .

[9]  F. Bouchut ON ZERO PRESSURE GAS DYNAMICS , 1996 .

[10]  A. Vasseur,et al.  Time regularity for the system of isentropic gas dynamics with γ= 3 , 1999 .

[11]  Y. Brenier,et al.  A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .

[12]  B. Engquist,et al.  Multi-phase computations in geometrical optics , 1996 .

[13]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[14]  Laurent Gosse,et al.  Convergence results for an inhomogeneous system arising in various high frequency approximations , 2002, Numerische Mathematik.

[15]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[16]  A. Tzavaras,et al.  Representation of weak limits and definition of nonconservative products , 1999 .

[17]  J. Benamou Direct computation of multivalued phase space solutions for Hamilton-Jacobi equations , 1999 .

[18]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[19]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[20]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[21]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[22]  Shi Jin,et al.  Numerical Approximations of Pressureless and Isothermal Gas Dynamics , 2003, SIAM J. Numer. Anal..

[23]  Olof Runborg,et al.  Some new results in multiphase geometrical optics , 2000 .

[24]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[25]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[26]  George Papanicolaou,et al.  Waves and transport , 1998 .

[27]  L. Gosse Using K-Branch Entropy Solutions for Multivalued Geometric Optics Computations , 2002 .

[28]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[29]  Y. Brenier,et al.  Sticky Particles and Scalar Conservation Laws , 1998 .

[30]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[31]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[32]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[33]  Björn Engquist,et al.  High-Frequency Wave Propagation by the Segment Projection Method , 2002 .

[34]  G. Whitham,et al.  Non-linear dispersive waves , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  J. Sethian,et al.  Fast-phase space computation of multiple arrivals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[37]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[38]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[39]  Stanley Osher,et al.  Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .

[40]  Laurent Gosse,et al.  Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients , 2000, Math. Comput..