Convolution spline approximations of Volterra integral equations

We derive a new “convolution spline” approximation method for convolution Volterra integral equations. This shares some properties of convolution quadrature, but instead of being based on an underlying ODE solver is explicitly constructed in terms of basis functions which have compact support. At time step tn = nh > 0, the solution is approximated in a “backward time” manner in terms of basis functions φj by u(tn− t) ≈ ∑n j=0 un−jφj(t/h) for t ∈ [0, tn]. We carry out a detailed analysis for B-spline basis functions, but note that the framework is more general than this. For B-splines of degree m ≥ 1 we show that the schemes converge at the rate O(h) when the kernel is sufficiently smooth. We also establish a methodology for their stability analysis and obtain new stability results for several non-smooth kernels, including the case of a highly oscillatory Bessel function kernel (in which the oscillation frequency can be O(1/h)). This is related to convergence analysis for approximation of time domain boundary integral equations (TDBIEs), and provides evidence that the new convolution spline approach could provide a useful time-stepping mechanism for TDBIE problems. In particular, using compactly supported basis functions would give sparse system matrices.

[1]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[2]  G. Doetsch Guide to the applications of the Laplace and Z-transforms , 1971 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  Hermann Brunner Discretization of Volterra integral equations of the first kind (II) , 1978 .

[5]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[6]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[7]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[8]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[9]  T. Ha-Duong,et al.  On the transient acoustic scattering by a flat object , 1990 .

[10]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[11]  Isabelle Terrasse,et al.  Resolution mathematique et numerique des equations de maxwell instationnaires par une methode de potentiels retardes , 1993 .

[12]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[13]  Penny J. Davies,et al.  Numerical stability and convergence of approximations of retarded potential integral equations , 1994 .

[14]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[15]  Ergin,et al.  Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm , 2000, The Journal of the Acoustical Society of America.

[16]  Mingyu Lu,et al.  Fast Evaluation of Two-Dimensional Transient Wave Fields , 2000 .

[17]  Dugald B. Duncan,et al.  Numerical stability of collocation schemes for time domain boundary integral equations , 2003 .

[18]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[19]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[20]  Martin Costabel,et al.  Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .

[21]  Stefan A. Sauter,et al.  Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering (extended version) , 2006 .

[22]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[23]  Wolfgang Hackbusch,et al.  Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .

[24]  Hermann Brunner,et al.  Discontinuous Galerkin approximations for Volterra integral equations of the first kind , 2009 .

[25]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[26]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[27]  Lehel Banjai,et al.  An error analysis of Runge–Kutta convolution quadrature , 2011 .

[28]  Jens Markus Melenk,et al.  Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.

[29]  H. Brunner,et al.  Global convergence and local superconvergence of first-kind Volterra integral equation approximations , 2012 .

[30]  Stefan A. Sauter,et al.  A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions , 2013, Numerische Mathematik.

[31]  J. Ortega Numerical Analysis: A Second Course , 1974 .