Convolution spline approximations of Volterra integral equations
暂无分享,去创建一个
[1] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[2] G. Doetsch. Guide to the applications of the Laplace and Z-transforms , 1971 .
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] Hermann Brunner. Discretization of Volterra integral equations of the first kind (II) , 1978 .
[5] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[6] Ernst Hairer,et al. FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .
[7] A. Bamberger et T. Ha Duong,et al. Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .
[8] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[9] T. Ha-Duong,et al. On the transient acoustic scattering by a flat object , 1990 .
[10] John G. Proakis,et al. Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .
[11] Isabelle Terrasse,et al. Resolution mathematique et numerique des equations de maxwell instationnaires par une methode de potentiels retardes , 1993 .
[12] C. Lubich,et al. On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .
[13] Penny J. Davies,et al. Numerical stability and convergence of approximations of retarded potential integral equations , 1994 .
[14] E. Michielssen,et al. The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .
[15] Ergin,et al. Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm , 2000, The Journal of the Acoustical Society of America.
[16] Mingyu Lu,et al. Fast Evaluation of Two-Dimensional Transient Wave Fields , 2000 .
[17] Dugald B. Duncan,et al. Numerical stability of collocation schemes for time domain boundary integral equations , 2003 .
[18] T. Ha-Duong,et al. On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .
[19] Dugald B. Duncan,et al. Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..
[20] Martin Costabel,et al. Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .
[21] Stefan A. Sauter,et al. Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering (extended version) , 2006 .
[22] Ivan P. Gavrilyuk,et al. Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..
[23] Wolfgang Hackbusch,et al. Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .
[24] Hermann Brunner,et al. Discontinuous Galerkin approximations for Volterra integral equations of the first kind , 2009 .
[25] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[26] Lehel Banjai,et al. Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..
[27] Lehel Banjai,et al. An error analysis of Runge–Kutta convolution quadrature , 2011 .
[28] Jens Markus Melenk,et al. Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.
[29] H. Brunner,et al. Global convergence and local superconvergence of first-kind Volterra integral equation approximations , 2012 .
[30] Stefan A. Sauter,et al. A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions , 2013, Numerische Mathematik.
[31] J. Ortega. Numerical Analysis: A Second Course , 1974 .