Status and Outlook of the Neutron Time-of-Flight Facility n_TOF at CERN

Abstract The neutron time-of-flight facility n_TOF at CERN, fully operational since 2002, combines a high instantaneous neutron flux with high energy resolution. The wide energy range and the high neutron flux per time-of-flight burst result in a much enhanced signal to background ratio for neutron capture of radioactive isotopes and makes this facility well suited for the measurement of high quality neutron-induced reaction cross-sections. Neutrons are created by spallation reactions induced by a pulsed 20 GeV/c proton beam impinging on a lead target. A 5 cm water slab surrounding the lead target serves as a coolant and at the same time as a moderator of the spallation neutron spectrum, providing a wide energy spectrum from 0.1 eV to about 250 MeV. By the end of 2005, a first phase of data taking has been successfully terminated. Fission and capture experiments have been performed on a variety of isotopes of interest for nuclear astrophysics, advanced nuclear technologies and for basic nuclear physics. The instrumentation developed for this facility consists of parallel plate avalanche counter and fission ionization chamber detectors for the fission experiments and of low mass C6D6 detectors and a 4 pi BaF2 total absorption calorimeter for capture experiments. A new data acquisition system, based on sampling of the detector signals, has been developed to cope with the high count rates and to minimize the effective dead time to only a few tens of nanosecond. A second phase of data taking is planned to start in 2007, after an upgrade of the spallation target. On the longer term, the construction of a flight path at 20 m resulting in an increased neutron flux of about a factor of 100 opens new possibilities.

Michael Heil | M. Igashira | L. Tassan-Got | C. Stephan | U. Abbondanno | G. Aerts | J. Andrzejewski | Gerald Badurek | P. Baumann | F. Calviño | D. Cano-Ott | P. Cennini | E. Chiaveri | A. Couture | M. Dahlfors | W. Dridi | L. Ferrant | K. Fujii | A. Goverdovski | F. Gramegna | F. Gunsing | D. Karadimos | M. Kerveno | V. Ketlerov | A. Lindote | S. Lukic | S. Marrone | M. Mosconi | L. Perrot | A. Plukis | A. Poch | C. Pretel | J. M. Quesada | Thomas Rauscher | G. Rudolf | P. Rullhusen | J. Salgado | L. Sarchiapone | I. Savvidis | L. Tavora | R. Terlizzi | A. Ventura | D. Villamarin | F. Voss | S. Walter | M. Krtička | Carlo Rubbia | F. Käppeler | G. Vannini | A. Ferrari | C. Domingo-Pardo | C. Papachristodoulou | E. Berthoumieux | E. González-Romero | Carlos Guerrero | R. Reifarth | L. Audouin | H. Álvarez | D. Karamanis | J. Pancin | S. Andriamonje | N. Patronis | Michael Wiescher | F. Álvarez-Velarde | Nicola Colonna | Heinz Oberhummer | R. Plag | G. Tagliente | P. Pavlopoulos | E. Griesmayer | Francisco Neves | A. Herrera-Martinez | R. Capote | R. Ferreira-Marques | R. Dolfini | E. Jericha | Alberto Mengoni | P. M. Milazzo | V. Chepel | C. Eleftheriadis | W. Furman | Y. Kadi | P. Koehler | E. Kossionides | H. Leeb | I. Lopes | M. Lozano | J. Marganiec | C. Moreau | S. O’Brien | C. Paradela | A. Pavlik | M. T. Pigni | M. Rosetti | J. L. Tain | M. C. Vincente | V. Vlachoudis | R. Vlastou | K. Wisshak | P. A. Assimakopoulos | S. David | B. Haas | C. T. Papadopoulos | F. Bečvář | C. Lampoudis | Pedro Vaz | E. Griesmayer | A. Ferrari | S. Marrone | Y. Kadi | A. Herrera-Martínez | R. Haight | P. Vaz | V. Vlachoudis | M. Lozano | R. Capote | C. Papadopoulos | M. Rosetti | D. Karamanis | M. Igashira | S. Isaev | J. Andrzejewski | A. Albornoz | P. Cennini | C. Rubbia | C. Lampoudis | R. Dolfini | A. Lindote | S. Lukić | H. Wendler | M. Kerveno | A. Plompen | G. Rudolf | F. Käppeler | R. Reifarth | W. Furman | S. Andriamonje | C. Eleftheriadis | P. Pavlopoulos | C. Stephan | L. Tassan-got | L. Audouin | S. David | C. Domingo-Pardo | A. Couture | E. Chiaveri | L. Sarchiapone | F. Bečvář | N. Colonna | E. Berthoumieux | F. Calviño | D. Cano-Ott | G. Cortes | I. Ďuran | E. González-Romero | C. Guerrero | F. Gunsing | T. Martinez | P. Mastinu | A. Mengoni | P. Milazzo | N. Patronis | A. Pavlík | J. Quesada | G. Tagliente | J. Taı́n | G. Vannini | R. Vlastou | C. Massimi | A. Ventura | M. Dahlfors | C. Paradela | H. Álvarez | L. Ferrant | U. Abbondanno | K. Fujii | C. Moreau | G. Aerts | F. Álvarez-Velarde | I. Goncalves | A. Goverdovski | E. Jericha | V. Ketlerov | H. Leeb | J. Marganiec | T. Rauscher | M. Heil | R. Plag | K. Wisshak | P. Assimakopoulos | G. Badurek | V. Chepel | R. Ferreira-Marques | H. Frais‐Koelbl | F. Gramegna | P. Koehler | V. Konovalov | E. Kossionides | H. Oberhummer | S. O'Brien | J. Pancin | L. Perrot | A. Plukis | A. Poch | C. Pretel | P. Rullhusen | J. Salgado | L. Tavora | R. Terlizzi | F. Voss | M. Wiescher | P. Baumann | J. Cox | M. Mosconi | I. Dillman | W. Dridi | B. Haas | D. Karadimos | I. Lopes | F. Neves | M. Oshima | C. Papachristodoulou | I. Savvidis | D. Villamarín | M. Vincente | S. Walter | M. Pigni | L. Marques | C. Massimi | A. Plompen | H. Frais-Koelbl | R. Haight | H. Wendler | I. Goncalves | A. Carrillo de Albornoz | L. Marques | I. Dillman | M. Oshima | P F Mastinu | Trinitario Martinez | Guillem Cortes | J. M. Cox | I Duran | S. G. Isaev | V. Y. Konovalov | D. Villamarı́n | M. Krticka | A. Pavlik

[1]  A. Giorni,et al.  Fast subcritical hybrid reactors for energy production: evolution of physical parameters and induced radiotoxicities , 2000 .

[2]  Arthur E Champagne,et al.  Synthesis of the elements in stars: forty years of progress , 1997 .

[3]  Waclaw Gudowski,et al.  Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation , 1999 .

[4]  F. Käppeler,et al.  An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-sections , 2003 .

[5]  S. Marrone,et al.  A low background neutron flux monitor for the n_TOF facility at CERN , 2004 .

[6]  G. Bacon Low energy neutron physics by I. I. Gurevich and L. V. Tarasov , 1969 .

[7]  Alberto Mengoni,et al.  On the Figure of Merit in Neutron Time-of-Flight Measurements , 2002 .

[8]  W. Abfalterer Level Widths and Level Densities of Nuclei in the 32 Less than or Equal to a Less than or Equal to 60 Mass Region Inferred from Fluctuation Analysis of Total Neutron Cross Sections , 2000 .

[9]  J. M. Perlado,et al.  New experimental validation of the pulse height weighting technique for capture cross-section measurements , 2004 .

[10]  Isabel S. Gonçalves,et al.  Neutron capture cross section of Th-232 measured at the n_TOF facility at CERN in the unresolved resonance region up to 1-MeV , 2006 .

[11]  F. Käppeler The origin of the heavy elements: The s process , 1999 .

[12]  E. Radermacher,et al.  Results from the commissioning of the n_TOF spallation neutron source at CERN , 2003 .

[13]  Isabel S. Gonçalves,et al.  Measurement of the n_TOF beam profile with a micromegas detector , 2004 .

[14]  New measurement of neutron capture resonances in Bi-209 , 2006, nucl-ex/0610040.

[15]  M. Salvatores,et al.  The transmutation of long-lived fission products by neutron irradiation , 1998 .

[16]  G. Mitchell,et al.  Parity-violating gamma-ray asymmetry in the neutron-proton capture , 2003 .

[17]  Yacine Kadi,et al.  Time-energy relation of the n_TOF neutron beam : energy standards revisited , 2004 .

[18]  T. Egidy,et al.  Systematics of nuclear level density parameters , 2003 .

[19]  J. M. Perlado,et al.  The data acquisition system of the neutron time-of-flight facility n_TOF at CERN , 2005 .

[20]  J. M. Perlado,et al.  Neutron capture cross section measurement of $^{151}$Sm at the CERN neutron time of flight facility (n_TOF) , 2004 .

[21]  T. Fukahori,et al.  Unified model of nuclear mass and level density formulas , 2005 .