Confluence reduction for Markov automata

Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. As expected, the state space explosion threatens the analysability of these models. We therefore introduce confluence reduction for Markov automata, a powerful reduction technique to keep them small by omitting internal transitions. We define the notion of confluence directly on Markov automata, and discuss additionally how to syntactically detect confluence on the process-algebraic language MAPA that was introduced recently. That way, Markov automata generated by MAPA specifications can be reduced on-the-fly while preserving divergence-sensitive branching bisimulation. Three case studies demonstrate the significance of our approach, with reductions in analysis time up to an order of magnitude.

[1]  Jan Friso Groote,et al.  An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence , 1990, ICALP.

[2]  Radu Mateescu,et al.  CADP 2011: a toolbox for the construction and analysis of distributed processes , 2012, International Journal on Software Tools for Technology Transfer.

[3]  Antti Valmari,et al.  Stubborn sets for reduced state generation , 1991 .

[4]  Matthias Kuntz,et al.  Architectural dependability evaluation with Arcade , 2008, 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN).

[5]  Holger Hermanns,et al.  Model Checking Algorithms for Markov Automata , 2012, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[6]  Joost-Pieter Katoen GSPNs Revisited: Simple Semantics and New Analysis Algorithms , 2012, 2012 12th International Conference on Application of Concurrency to System Design.

[7]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[8]  Sami Evangelista,et al.  Solving the ignoring problem for partial order reduction , 2010, International Journal on Software Tools for Technology Transfer.

[9]  Wan Fokkink,et al.  Simplifying Itai-Rodeh Leader Election for Anonymous Rings , 2005, Electron. Notes Theor. Comput. Sci..

[10]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[11]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[12]  Jaco van de Pol,et al.  State Space Reduction by Proving Confluence , 2002, CAV.

[13]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[14]  Christel Baier,et al.  Partial order reduction for probabilistic systems , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[15]  Arnd Hartmanns,et al.  On-the-Fly Confluence Detection for Statistical Model Checking , 2013, NASA Formal Methods.

[16]  Holger Hermanns,et al.  Probabilistic Bisimulation: Naturally on Distributions , 2014, CONCUR.

[17]  Gordon J. Pace,et al.  Calculating-Confluence Compositionally , 2003, CAV.

[18]  Christel Baier,et al.  Principles of model checking , 2008 .

[19]  Matthew Hennessy,et al.  On the semantics of Markov automata , 2011, Inf. Comput..

[20]  Lijun Zhang,et al.  Model Checking Interactive Markov Chains , 2010, TACAS.

[21]  Jan Friso Groote,et al.  Confluence for Process Verification , 1995, Theor. Comput. Sci..

[22]  Kim G. Larsen,et al.  Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.

[23]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[24]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[25]  Mariëlle Stoelinga,et al.  Alea jacta est : verification of probabilistic, real-time and parametric systems , 2002 .

[26]  Joost-Pieter Katoen,et al.  Delayed Nondeterminism in Continuous-Time Markov Decision Processes , 2009, FoSSaCS.

[27]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[28]  Arend Rensink,et al.  Publishing your prototype tool on the web: PUPTOL, a framework , 2013 .

[29]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[30]  Henri Hansen,et al.  A comparison of confluence and ample sets in probabilistic and non-probabilistic branching time , 2014, Theor. Comput. Sci..

[31]  Mark Timmer,et al.  Efficient modelling, generation and analysis of Markov automata , 2013 .

[32]  Joost-Pieter Katoen,et al.  Exponentially timed SADF: Compositional semantics, reductions, and analysis , 2014, 2014 International Conference on Embedded Software (EMSOFT).

[33]  Jaco van de Pol,et al.  Confluence Reduction for Probabilistic Systems , 2011, TACAS.

[34]  Lijun Zhang,et al.  Concurrency and Composition in a Stochastic World , 2010, CONCUR.

[35]  Mark Timmer SCOOP: A Tool for SymboliC Optimisations of Probabilistic Processes , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[36]  Joost-Pieter Katoen,et al.  Modelling, Reduction and Analysis of Markov Automata (extended version) , 2013, QEST.

[37]  Patrice Godefroid,et al.  Refining Dependencies Improves Partial-Order Verification Methods (Extended Abstract) , 1993, CAV.

[38]  Antti Valmari,et al.  On-the-Fly Verification with Stubborn Sets , 1993, CAV.

[39]  Joost-Pieter Katoen,et al.  The How and Why of Interactive Markov Chains , 2009, FMCO.

[40]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[41]  Pedro R. D'Argenio,et al.  Partial order reduction on concurrent probabilistic programs , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[42]  J. C. van de Pol,et al.  Confluence reduction for Markov automata (extended version) , 2013 .

[43]  Joost-Pieter Katoen,et al.  Safety, Dependability and Performance Analysis of Extended AADL Models , 2011, Comput. J..

[44]  Joost-Pieter Katoen,et al.  Analysis of Timed and Long-Run Objectives for Markov Automata , 2014, Log. Methods Comput. Sci..

[45]  Antti Valmari Stop It, and Be Stubborn! , 2015, ACSD.

[46]  Jaco van de Pol,et al.  State Space Reduction of Linear Processes Using Control Flow Reconstruction , 2009, ATVA.

[47]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[48]  Joost-Pieter Katoen,et al.  Efficient Modelling and Generation of Markov Automata , 2012, CONCUR.

[49]  Patrice Godefroid,et al.  Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.

[50]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[51]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[52]  Lijun Zhang,et al.  A Semantics for Every GSPN , 2013, Petri Nets.

[53]  Jan Friso Groote,et al.  Confluence for process verification , 1996 .

[54]  Christel Baier,et al.  Partial Order Reduction for Probabilistic Branching Time , 2006, QAPL.

[55]  Benedikt Bollig,et al.  A Robust Class of Data Languages and an Application to Learning , 2014, Log. Methods Comput. Sci..

[56]  S. C.C. Blom Partial $\tau$-confluence for efficient state space generation , 2001 .