The Legionella pneumophila replication vacuole: making a cosy niche inside host cells

[1]  O. Anderson,et al.  Legionella Eukaryotic-Like Type IV Substrates Interfere with Organelle Trafficking , 2008, PLoS pathogens.

[2]  K. Heuner,et al.  Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. , 2008, International journal of medical microbiology : IJMM.

[3]  C. Roy,et al.  Ankyrin Repeat Proteins Comprise a Diverse Family of Bacterial Type IV Effectors , 2008, Science.

[4]  J. Graham,et al.  Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. , 2008, Environmental microbiology.

[5]  Hiroki Nagai,et al.  Legionella translocates an E3 ubiquitin ligase that has multiple U‐boxes with distinct functions , 2008, Molecular microbiology.

[6]  P. Golstein,et al.  A specific pathway inducing autophagic cell death is marked by an IP3R mutation , 2008, Autophagy.

[7]  G. Segal,et al.  The Response Regulator CpxR Directly Regulates Expression of Several Legionella pneumophila icm/dot Components as Well as New Translocated Substrates , 2008, Journal of bacteriology.

[8]  R. Kramer,et al.  A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins , 2008, PLoS pathogens.

[9]  E. D. Cambronne,et al.  The Legionella pneumophila IcmSW Complex Interacts with Multiple Dot/Icm Effectors to Facilitate Type IV Translocation , 2007, PLoS pathogens.

[10]  C. Buchrieser,et al.  The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA , 2007, Cellular microbiology.

[11]  D. Lambright,et al.  Legionella pneumophila proteins that regulate Rab1 membrane cycling , 2007, Nature.

[12]  R. Isberg,et al.  A Bifunctional Bacterial Protein Links GDI Displacement to Rab1 Activation , 2007, Science.

[13]  J. Casanova Regulation of Arf Activation: the Sec7 Family of Guanine Nucleotide Exchange Factors , 2007, Traffic.

[14]  D. Kendall,et al.  Interactions that drive Sec-dependent bacterial protein transport. , 2007, Biochemistry.

[15]  Y. Abu Kwaik,et al.  Early trafficking and intracellular replication of Legionella longbeachaea within an ER‐derived late endosome‐like phagosome , 2007, Cellular microbiology.

[16]  P. Golstein,et al.  From autophagic to necrotic cell death in Dictyostelium. , 2007, Seminars in cancer biology.

[17]  W. Zong,et al.  Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family , 2007, Proceedings of the National Academy of Sciences.

[18]  T. Zusman,et al.  The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii , 2007, Molecular microbiology.

[19]  J. Suttles,et al.  Anti‐apoptotic signalling by the Dot/Icm secretion system of L. pneumophila , 2007, Cellular microbiology.

[20]  R. Isberg,et al.  A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death , 2006, Proceedings of the National Academy of Sciences.

[21]  J. Friedman,et al.  Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system , 2006, Molecular microbiology.

[22]  Yancheng Liu,et al.  The Legionella pneumophila Effector SidJ Is Required for Efficient Recruitment of Endoplasmic Reticulum Proteins to the Bacterial Phagosome , 2006, Infection and Immunity.

[23]  J. Gorvel,et al.  The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche , 2006, Infection and Immunity.

[24]  G. Martin,et al.  Comparative Genomics of Host-Specific Virulence in Pseudomonas syringae , 2006, Genetics.

[25]  R. Isberg,et al.  NF-κB translocation prevents host cell death after low-dose challenge by Legionella pneumophila , 2006, The Journal of Experimental Medicine.

[26]  D. Toomre,et al.  The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor , 2006, Nature Cell Biology.

[27]  M. Jules,et al.  Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila , 2006, Cellular microbiology.

[28]  J. Vogel,et al.  The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm‐dependent intracellular growth , 2006, Molecular microbiology.

[29]  R. Isberg,et al.  Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. , 2006, Developmental cell.

[30]  C. Roy,et al.  MyD88-Dependent Responses Involving Toll-Like Receptor 2 Are Important for Protection and Clearance of Legionella pneumophila in a Mouse Model of Legionnaires' Disease , 2006, Infection and Immunity.

[31]  R. Isberg,et al.  Members of a Legionella pneumophila Family of Proteins with ExoU (Phospholipase A) Active Sites Are Translocated to Target Cells , 2006, Infection and Immunity.

[32]  C. G. Robinson,et al.  Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila , 2006, Cellular microbiology.

[33]  R. Isberg,et al.  Non-vertebrate hosts in the analysis of host-pathogen interactions. , 2006, Microbes and infection.

[34]  M. Swanson,et al.  Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection , 2006, The Journal of experimental medicine.

[35]  J. Bader,et al.  RNA Interference Analysis of Legionella in Drosophila Cells: Exploitation of Early Secretory Apparatus Dynamics , 2006, PLoS pathogens.

[36]  W. Dietrich,et al.  Flagellin-Deficient Legionella Mutants Evade Caspase-1- and Naip5-Mediated Macrophage Immunity , 2006, PLoS pathogens.

[37]  S. Paik,et al.  Regulation of BNIP3 in normal and cancer cells. , 2006, Molecules and cells.

[38]  C. Buchrieser,et al.  Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. , 2006, Current opinion in microbiology.

[39]  W. Dietrich,et al.  The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection , 2006, Nature Immunology.

[40]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Terry K. Smith,et al.  Reevaluation of the PPAR-β/δ Ligand Binding Domain Model Reveals Why It Exhibits the Activated Form , 2006 .

[42]  C. Pericone,et al.  Evidence for Acquisition of Legionella Type IV Secretion Substrates via Interdomain Horizontal Gene Transfer , 2005, Journal of bacteriology.

[43]  T. Zusman,et al.  Additive Effect on Intracellular Growth by Legionella pneumophila Icm/Dot Proteins Containing a Lipobox Motif , 2005, Infection and Immunity.

[44]  B. Vinatzer,et al.  Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. , 2005, Molecular plant-microbe interactions : MPMI.

[45]  M. Clarke,et al.  Dynamic properties of Legionella‐containing phagosomes in Dictyostelium amoebae , 2005, Cellular microbiology.

[46]  L. Frost,et al.  Mutations in the C-Terminal Region of TraM Provide Evidence for In Vivo TraM-TraD Interactions during F-Plasmid Conjugation , 2005, Journal of bacteriology.

[47]  M. Swanson,et al.  Autophagy is an immediate macrophage response to Legionella pneumophila , 2005, Cellular microbiology.

[48]  R. Goody,et al.  The structural and mechanistic basis for recycling of Rab proteins between membrane compartments , 2005, Cellular and Molecular Life Sciences CMLS.

[49]  C. Roy,et al.  A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system , 2005, Molecular microbiology.

[50]  R. Isberg,et al.  The DotL Protein, a Member of the TraG-Coupling Protein Family, Is Essential for Viability of Legionella pneumophila Strain Lp02 , 2005, Journal of bacteriology.

[51]  J Patrick Bardill,et al.  IcmS‐dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system , 2005, Molecular microbiology.

[52]  S. Emr,et al.  Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Jeff H. Chang,et al.  A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Hiroki Nagai,et al.  A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. D. Cambronne,et al.  The Legionella IcmS–IcmW protein complex is important for Dot/Icm‐mediated protein translocation , 2004, Molecular microbiology.

[56]  Daniel J. Klionsky,et al.  Autophagy in Health and Disease: A Double-Edged Sword , 2004, Science.

[57]  R. Isberg,et al.  Macrophages from Mice with the Restrictive Lgn1 Allele Exhibit Multifactorial Resistance to Legionella pneumophila , 2004, Infection and Immunity.

[58]  C. Buchrieser,et al.  Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity , 2004, Nature Genetics.

[59]  J. Sexton,et al.  Legionella pneumophila DotU and IcmF Are Required for Stability of the Dot/Icm Complex , 2004, Infection and Immunity.

[60]  R. Isberg,et al.  IcmF and DotU Are Required for Optimal Effector Translocation and Trafficking of the Legionella pneumophila Vacuole , 2004, Infection and Immunity.

[61]  I. Chou,et al.  The Genomic Sequence of the Accidental Pathogen Legionella pneumophila , 2004, Science.

[62]  Y. Kwaik,et al.  Disruption of the Phagosomal Membrane and Egress of Legionella pneumophila into the Cytoplasm during the Last Stages of Intracellular Infection of Macrophages and Acanthamoeba polyphaga , 2004, Infection and Immunity.

[63]  M. Pypaert,et al.  Legionella Subvert the Functions of Rab1 and Sec22b to Create a Replicative Organelle , 2004, The Journal of experimental medicine.

[64]  R. Isberg,et al.  Legionella pneumophila Replication Vacuole Formation Involves Rapid Recruitment of Proteins of the Early Secretory System , 2004, Infection and Immunity.

[65]  M. Solà,et al.  Coupling factors in macromolecular type-IV secretion machineries. , 2004, Current pharmaceutical design.

[66]  B. Neumeister,et al.  Phagosomal acidification is not a prerequisite for intracellular multiplication of Legionella pneumophila in human monocytes. , 2004, The Journal of infectious diseases.

[67]  Daniel J Klionsky,et al.  Development by self-digestion: molecular mechanisms and biological functions of autophagy. , 2004, Developmental cell.

[68]  O. Anderson,et al.  Legionella Effectors That Promote Nonlytic Release from Protozoa , 2004, Science.

[69]  R. Isberg,et al.  IcmR-regulated Membrane Insertion and Efflux by the Legionella pneumophila IcmQ Protein* , 2004, Journal of Biological Chemistry.

[70]  Zhao-Qing Luo,et al.  Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Zink,et al.  Activation of caspase‐3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella‐containing phagosome , 2004, Cellular microbiology.

[72]  R. Kessin,et al.  Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum , 2003, Molecular microbiology.

[73]  S. Pfeffer,et al.  Yip3 catalyses the dissociation of endosomal Rab–GDI complexes , 2003, Nature.

[74]  Z. Ding,et al.  VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens , 2003, Molecular microbiology.

[75]  G. Segal,et al.  Identification of CpxR as a Positive Regulator of icm and dot Virulence Genes of Legionella pneumophila , 2003, Journal of bacteriology.

[76]  R. Isberg,et al.  The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity , 2003, Molecular microbiology.

[77]  S. Zink,et al.  Comparative assessment of virulence traits in Legionella spp. , 2003, Microbiology.

[78]  C. Roy,et al.  Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites , 2002, Nature Cell Biology.

[79]  H. Northoff,et al.  Legionella pneumophila induces apoptosis via the mitochondrial death pathway. , 2002, Microbiology.

[80]  M. Swanson,et al.  A two‐component regulator induces the transmission phenotype of stationary‐phase Legionella pneumophila , 2002, Molecular microbiology.

[81]  M. Swanson,et al.  A Microbial Strategy to Multiply in Macrophages: The Pregnant Pause , 2002, Traffic.

[82]  R. Kahn,et al.  A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.

[83]  C. G. Robinson,et al.  How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. , 2001, Journal of cell science.

[84]  P. Petit,et al.  On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. , 2001, Molecular biology of the cell.

[85]  M. Swanson,et al.  RpoS co‐operates with other factors to induce Legionella pneumophila virulence in the stationary phase , 2001, Molecular microbiology.

[86]  R. Isberg,et al.  The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high‐molecular‐weight complexes , 2001, Molecular microbiology.

[87]  Samuel I. Miller,et al.  Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection , 2001, The EMBO journal.

[88]  L. Hernandez,et al.  A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization , 2001, Molecular microbiology.

[89]  M. Wolfgang,et al.  Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili , 2000, The EMBO journal.

[90]  S. Savvides,et al.  Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. , 2000, Molecular cell.

[91]  M. Swanson,et al.  Legionella pneumophila Replication Vacuoles Mature into Acidic, Endocytic Organelles , 2000, The Journal of experimental medicine.

[92]  A. Vergunst,et al.  VirB/D4-dependent protein translocation from Agrobacterium into plant cells. , 2000, Science.

[93]  H. Nagai,et al.  Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth , 2000, Molecular microbiology.

[94]  K. Chaudhuri,et al.  Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. , 2000, FEMS microbiology letters.

[95]  C. Roy,et al.  Identification and Subcellular Localization of the Legionella pneumophila IcmX Protein: a Factor Essential for Establishment of a Replicative Organelle in Eukaryotic Host Cells , 2000, Infection and Immunity.

[96]  Tetsu Yoshida,et al.  The transfer region of IncI1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes , 2000, Molecular microbiology.

[97]  Y. Abu Kwaik,et al.  Activation of Caspase 3 during Legionella pneumophila-Induced Apoptosis , 1999, Infection and Immunity.

[98]  H. Shuman,et al.  The Legionella pneumophila rpoS Gene Is Required for Growth within Acanthamoeba castellanii , 1999, Journal of bacteriology.

[99]  H. Shuman,et al.  Legionella pneumophila Utilizes the Same Genes To Multiply within Acanthamoeba castellanii and Human Macrophages , 1999, Infection and Immunity.

[100]  D. Kaiser,et al.  Type IV pili and cell motility , 1999, Molecular microbiology.

[101]  Y. Abu Kwaik,et al.  Apoptosis in Macrophages and Alveolar Epithelial Cells during Early Stages of Infection by Legionella pneumophila and Its Role in Cytopathogenicity , 1999, Infection and Immunity.

[102]  M. Swanson,et al.  Expression of Legionella pneumophilaVirulence Traits in Response to Growth Conditions , 1998, Infection and Immunity.

[103]  R. Isberg,et al.  Identification of Linked Legionella pneumophila Genes Essential for Intracellular Growth and Evasion of the Endocytic Pathway , 1998, Infection and Immunity.

[104]  H. Shuman,et al.  Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[106]  R. Isberg,et al.  Evidence for pore‐forming ability by Legionella pneumophila , 1998, Molecular microbiology.

[107]  H. Shuman,et al.  Characterization of a new region required for macrophage killing by Legionella pneumophila , 1997, Infection and immunity.

[108]  B. Antonny,et al.  A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains , 1996, Nature.

[109]  J. Hacker,et al.  Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection , 1996, Infection and immunity.

[110]  J. Brieland,et al.  Coinoculation with Hartmannella vermiformis enhances replicative Legionella pneumophila lung infection in a murine model of Legionnaires' disease , 1996, Infection and immunity.

[111]  Y. Kwaik The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. , 1996 .

[112]  Y. Kwaik,et al.  The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum , 1996, Applied and environmental microbiology.

[113]  M. Swanson,et al.  Association of Legionella pneumophila with the macrophage endoplasmic reticulum , 1995, Infection and immunity.

[114]  R. Isberg,et al.  Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene , 1994, Molecular microbiology.

[115]  H. Shuman,et al.  The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages , 1994, Molecular microbiology.

[116]  H. Shuman,et al.  Identification of Legionella pneumophila genes required for growth within and killing of human macrophages , 1993, Infection and immunity.

[117]  M. Horwitz,et al.  Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[118]  S Falkow,et al.  Molecular Koch's postulates applied to microbial pathogenicity. , 1988, Reviews of infectious diseases.

[119]  V L Yu,et al.  Mode of transmission of Legionella pneumophila. A critical review. , 1986, Archives of internal medicine.

[120]  F. Maxfield,et al.  Legionella pneumophila inhibits acidification of its phagosome in human monocytes , 1984, The Journal of cell biology.

[121]  M. Horwitz The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes , 1983, The Journal of experimental medicine.

[122]  M. Horwitz Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes , 1983, The Journal of experimental medicine.

[123]  T. Rowbotham,et al.  Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. , 1980, Journal of clinical pathology.

[124]  K. Webster,et al.  BNip3 and signal-specific programmed death in the heart. , 2005, Journal of molecular and cellular cardiology.

[125]  Y. Kwaik,et al.  Structure-function analysis of the C-terminus of IcmT of Legionella pneumophila in pore formation-mediated egress from macrophages. , 2005, FEMS microbiology letters.

[126]  S. Falkow Molecular Koch's postulates applied to bacterial pathogenicity — a personal recollection 15 years later , 2004, Nature Reviews Microbiology.

[127]  P. Graumann SMC proteins in bacteria: condensation motors for chromosome segregation? , 2001, Biochimie.