Motion distorts visual space: shifting the perceived position of remote stationary objects

To perceive the relative positions of objects in the visual field, the visual system must assign locations to each stimulus. This assignment is determined by the object's retinal position, the direction of gaze, eye movements, and the motion of the object itself. Here we show that perceived location is also influenced by motion signals that originate in distant regions of the visual field. When a pair of stationary lines are flashed, straddling but not overlapping a rotating radial grating, the lines appear displaced in a direction consistent with that of the grating's motion, even when the lines are a substantial distance from the grating. The results indicate that motion's influence on position is not restricted to the moving object itself, and that even the positions of stationary objects are coded by mechanisms that receive input from motion-sensitive neurons.

[1]  T J Sejnowski,et al.  Motion integration and postdiction in visual awareness. , 2000, Science.

[2]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[3]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[4]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[5]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[6]  K. D. De Valois,et al.  Vernier acuity with stationary moving Gabors. , 1991, Vision research.

[7]  K. Nakayama,et al.  Temporal and spatial characteristics of the upper displacement limit for motion in random dots , 1984, Vision Research.

[8]  Gerhard A. Brecher,et al.  Effects of rotating backgrounds upon the perception of verticality , 1972 .

[9]  Alexandre Pouget,et al.  Perceived geometrical relationships affected by eye-movement signals , 1997, Nature.

[10]  R. Held,et al.  Moving Visual Scenes Influence the Apparent Direction of Gravity , 1972, Science.

[11]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[12]  P. Cavanagh,et al.  Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli , 2000, Vision Research.

[13]  R. Sekuler,et al.  Assimilation and contrast in motion perception: Explorations in cooperativity , 1990, Vision Research.

[14]  M. Sanders Handbook of Sensory Physiology , 1975 .

[15]  Frans A. J. Verstraten,et al.  Limits of attentive tracking reveal temporal properties of attention , 2000, Vision Research.

[16]  Dennis M. Levi,et al.  The role of separation and eccentricity in encoding position , 1990, Vision Research.

[17]  Romi Nijhawan,et al.  Extrapolation or attention shift? , 1995, Nature.

[18]  O. J. Braddick,et al.  Extension of displacement limits in multiple-exposure sequences of apparent motion , 1989, Vision Research.

[19]  Andrew M. Derrington,et al.  Motion of chromatic stimuli: First-order or second-order? , 1994, Vision Research.

[20]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[21]  J. S. Barlow The mindful brain: B.M. Edelman and V.B. Mountcastle (MIT Press, Cambridge, Mass., 1978, 100 p., U.S. $ 10.00) , 1979 .

[22]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[23]  I. Murakami,et al.  Latency difference, not spatial extrapolation , 1998, Nature Neuroscience.

[24]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[25]  Stanley A. Klein,et al.  Extrapolation or attention shift? , 1995, Nature.

[26]  P Cavanagh,et al.  Attention-based motion perception. , 1992, Science.

[27]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[28]  R. L. Valois,et al.  Vernier acuity with stationary moving Gabors , 1991, Vision Research.

[29]  Shin'ya Nishida,et al.  Influence of motion signals on the perceived position of spatial pattern , 1999, Nature.

[30]  H. A. Witkin,et al.  Studies in space orientation; further experiments on perception of the upright with displaced visual fields. , 1948, Journal of experimental psychology.

[31]  Walter C. Gogel,et al.  The adjacency principle and induced movement , 1972 .

[32]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[33]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[34]  Richard Held,et al.  Eye torsion and the apparent horizon under head tilt and visual field rotation , 1981, Vision Research.

[35]  S. Anstis,et al.  Interactions between motion aftereffects and induced movement , 1976, Vision Research.

[36]  M. Wertheimer,et al.  A source book of Gestalt psychology. , 1939 .

[37]  J. Schauer,et al.  Extrapolating Movement without Retinal Motion , 2022 .

[38]  V. S. Ramachandran,et al.  Interaction between colour and motion in human vision , 1987, Nature.

[39]  A. Reinhardt-Rutland,et al.  Induced movement in the visual modality: an overview. , 1988, Psychological bulletin.

[40]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[41]  Kenneth R. Boff,et al.  Vernier offset produced by rotary target motion , 1976 .

[42]  A. Kertesz,et al.  The effect of angular velocity of stimulus on human torsional eye movements. , 1969, Vision research.

[43]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[44]  Gopathy Purushothaman,et al.  Moving ahead through differential visual latency , 1998, Nature.

[45]  R. Snowden,et al.  Shifts in perceived position following adaptation to visual motion , 1998, Current Biology.