Combinatorial two-stage minmax regret problems under interval uncertainty

In this paper a class of combinatorial optimization problems is discussed. It is assumed that a feasible solution can be constructed in two stages. In the first stage the objective function costs are known while in the second stage they are uncertain and belong to an interval uncertainty set. In order to choose a solution, the minmax regret criterion is used. Some general properties of the problem are established and results for two particular problems, namely the shortest path and the selection problem, are shown.

[1]  Adam Kasperski,et al.  On the existence of an FPTAS for minmax regret combinatorial optimization problems with interval data , 2007, Oper. Res. Lett..

[2]  Eduardo Conde,et al.  A 2-approximation for minmax regret problems via a mid-point scenario optimal solution , 2010, Oper. Res. Lett..

[3]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[4]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[5]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..

[6]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[7]  Marc Goerigk,et al.  A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem , 2015, Eur. J. Oper. Res..

[8]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[9]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[10]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[11]  Adam Kasperski,et al.  Robust recoverable and two-stage selection problems , 2015, Discret. Appl. Math..

[12]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[13]  Eli Upfal,et al.  Commitment under uncertainty: Two-stage stochastic matching problems , 2007, Theor. Comput. Sci..

[14]  Alejandro Crema Min max min robust (relative) regret combinatorial optimization , 2020, Math. Methods Oper. Res..

[15]  Long Zhao,et al.  Solving two-stage robust optimization problems using a column-and-constraint generation method , 2013, Oper. Res. Lett..

[16]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[17]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[18]  P. Kall STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .

[19]  Benjamin Doerr Improved approximation algorithms for the Min-Max Selecting Items problem , 2013, Inf. Process. Lett..

[20]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust spanning tree problem with interval data , 2002, Eur. J. Oper. Res..

[21]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[22]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[23]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[24]  Igor Averbakh,et al.  Exact and heuristic algorithms for the interval data robust assignment problem , 2011, Comput. Oper. Res..

[25]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[26]  Pawel Zielinski,et al.  The computational complexity of the relative robust shortest path problem with interval data , 2004, Eur. J. Oper. Res..

[27]  Erick Delage,et al.  Adjustable Robust Optimization Reformulations of Two-Stage Worst-Case Regret Minimization Problems , 2019, Oper. Res..

[28]  Paweł Zieliński,et al.  Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey , 2016 .

[29]  Adam Kasperski,et al.  On the approximability of robust spanning tree problems , 2010, Theor. Comput. Sci..

[30]  D. Vanderpooten,et al.  Complexity of the min-max (regret) versions of min cut problems , 2008, Discret. Optim..

[31]  Eduardo Conde,et al.  An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion , 2004, Math. Program..

[32]  Adam Kurpisz,et al.  Approximating the min-max (regret) selecting items problem , 2013, Inf. Process. Lett..

[33]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[34]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Igor Averbakh,et al.  The Robust Set Covering Problem with interval data , 2011, Annals of Operations Research.

[37]  Adam Kasperski,et al.  On Recoverable and Two-Stage Robust Selection Problems with Budgeted Uncertainty , 2018, Eur. J. Oper. Res..

[38]  Adam Kasperski,et al.  The robust shortest path problem in series-parallel multidigraphs with interval data , 2006, Oper. Res. Lett..