Accurate Resolution of Time-Dependent and Circuit-Coupled Charge Transport Equations: 1-D Case Applied to 28-nm FD-SOI Devices

We present a new model for simulation of single-event effects in fully depleted silicon on insulator (FD-SOI) technology. The model is based on direct resolution of the drift-diffusion equations on a 1-D grid aligned with the source–channel–drain axis of the impacted MOSFETs. Our model is dynamically interfaced with a SPICE solver and shown to be both computationally efficient and in good correlation with 3-D technology computer-aided design (TCAD) radiation simulations. This allows us to embed the module in our soft-error rate simulation platform, enabling projections on logic cells in 28-nm FD-SOI.

[1]  Philippe Roche,et al.  On-Orbit Upset Rate Prediction at Advanced Technology Nodes: a 28 nm FD-SOI Case Study , 2017, IEEE Transactions on Nuclear Science.

[2]  Jeffrey S. Kauppila,et al.  Geometry-Aware Single-Event Enabled Compact Models for Sub-50 nm Partially Depleted Silicon-on-Insulator Technologies , 2015, IEEE Transactions on Nuclear Science.

[3]  Philippe Roche,et al.  Alpha soft error rate of FDSOI 28 nm SRAMs: Experimental testing and simulation analysis , 2015, 2015 IEEE International Reliability Physics Symposium.

[4]  G. Gasiot,et al.  Random-Walk Drift-Diffusion Charge-Collection Model For Reverse-Biased Junctions Embedded in Circuits , 2014, IEEE Transactions on Nuclear Science.

[5]  G. Gasiot,et al.  Application of the TIARA Radiation Transport Tool to Single Event Effects Simulation , 2014, IEEE Transactions on Nuclear Science.

[6]  Larry D Edmonds,et al.  A Theoretical Analysis of Steady-State Charge Collection in Simple Diodes Under High-Injection Conditions , 2010, IEEE Transactions on Nuclear Science.

[7]  J. Holmes,et al.  A Bias-Dependent Single-Event Compact Model Implemented Into BSIM4 and a 90 nm CMOS Process Design Kit , 2009, IEEE Transactions on Nuclear Science.

[8]  B.L. Bhuva,et al.  Effect of Well and Substrate Potential Modulation on Single Event Pulse Shape in Deep Submicron CMOS , 2007, IEEE Transactions on Nuclear Science.

[9]  E.E. Vogt,et al.  Prediction of SOI single-event effects using a simple physics-based SPICE model , 2005, IEEE Transactions on Nuclear Science.

[10]  O. Faynot,et al.  Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices , 2005, IEEE Transactions on Nuclear Science.

[11]  Ari Virtanen,et al.  Radiation effects facility RADEF , 2002, Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW 2002).

[12]  Guillaume Hubert,et al.  Device simulation study of the SEU sensitivity of SRAMs to internal ion tracks generated by nuclear reactions , 2001 .

[13]  Paul E. Dodd,et al.  Device simulation of charge collection and single-event upset , 1996 .

[14]  M. Alles SPICE analysis of the SEU sensitivity of a fully depleted SOI CMOS SRAM cell , 1994 .

[15]  Kartikeya Mayaram,et al.  Coupling algorithms for mixed-level circuit and device simulation , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[17]  R. M. Swanson,et al.  Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon , 1985, 1985 International Electron Devices Meeting.

[18]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[19]  Frank L. Madarasz,et al.  Temperature dependent density of states effective mass in nonparabolic p‐type silicon , 1983 .

[20]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[21]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[22]  A. Onton,et al.  Temperature dependence of the band gap of silicon , 1974 .

[23]  S. C. Choo,et al.  Theory of a forward-biased diffused-junction P-L-N rectifier—Part I: Exact numerical solutions , 1972 .

[24]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[25]  B. F. Oscillator Large-Signal Analysis of a Silicon Read Diode Oscillator , 1969 .

[26]  Neville H. Fletcher,et al.  The High Current Limit for Semiconductor Junction Devices , 1957, Proceedings of the IRE.