A reference genome for the long-term kleptoplast-retaining sea slug Elysia crispata 1

24 Several species of sacoglossan sea slugs possess the incredible ability to sequester chloroplasts 25 from the algae they consume. These ‘photosynthetic animals’ incorporate stolen chloroplasts, 26 called kleptoplasts, into the epithelial cells of tubules that extend from their digestive tracts 27 throughout their bodies. The mechanism by which these slugs maintain functioning kleptoplasts 28 in the absence of an algal nuclear genome is unknown. Here, we report a draft genome of the 29 saccoglossan slug Elysia crispata morphotype clarki, a morphotype native to the Florida Keys 30 that can retain photosynthetically active kleptoplasts for several months without feeding. We 31 used a combination of Oxford Nanopore Technologies long reads and Illumina short reads to 32 produce a 786 Mbp assembly containing 68,514 predicted protein-coding genes. A phylogenetic 33 analysis found no evidence of horizontal acquisition of genes from algae. We performed gene 34 family and gene expression analyses to identify E. crispata genes unique to kleptoplast-35 containing slugs that were more highly expressed in fed versus unfed developmental life stages. 36 Consistent with analyses in other kleptoplastic slugs, our investigation suggests that genes 37 encoding lectin carbohydrate-binding proteins and those involved in regulation of reactive 38 oxygen species and immunity may play a role in kleptoplast retention. Lastly, we identified four 39 polyketide synthase genes that could potentially encode proteins producing UV-and oxidation-40 blocking compounds in slug cell membranes. The genome of E. crispata is a quality resource 41 that provides potential targets for functional analyses and enables further investigation into the 42 evolution and mechanisms of kleptoplasty in animals.

[1]  P. Krug,et al.  A molecular phylogeny of Thuridilla Bergh, 1872 sea slugs (Gastropoda, Sacoglossa) reveals a case of flamboyant and cryptic radiation in the marine realm , 2021, Cladistics : the international journal of the Willi Hennig Society.

[2]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[3]  P. Bork,et al.  eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale , 2021, bioRxiv.

[4]  Richard J. Challis,et al.  MolluscDB: a genome and transcriptome database for molluscs , 2021, Philosophical Transactions of the Royal Society B.

[5]  M. Kühl,et al.  Functional kleptoplasts intermediate incorporation of carbon and nitrogen in cells of the Sacoglossa sea slug Elysia viridis , 2020, Scientific Reports.

[6]  Yutaka Suzuki,et al.  Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus , 2020, bioRxiv.

[7]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[8]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[9]  E. Schmidt,et al.  Animal biosynthesis of complex polyketides in a photosynthetic partnership , 2019, bioRxiv.

[10]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes , 2019, bioRxiv.

[11]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[12]  X. Fang,et al.  A draft genome assembly of the solar-powered sea slug Elysia chlorotica , 2019, Scientific Data.

[13]  R. Bock,et al.  OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes , 2019, bioRxiv.

[14]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[15]  Dmitry Antipov,et al.  Versatile genome assembly evaluation with QUAST-LG , 2018, Bioinform..

[16]  A. Weber,et al.  Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. , 2018, Annual review of plant biology.

[17]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[18]  E. Koonin,et al.  Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer , 2017, Virus Research.

[19]  Mark Blaxter,et al.  BlobTools: Interrogation of genome assemblies , 2017, F1000Research.

[20]  Axel Fischer,et al.  GeSeq – versatile and accurate annotation of organelle genomes , 2017, Nucleic Acids Res..

[21]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[22]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[23]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[24]  Ángel A. Valdés,et al.  Molecular and morphological systematics of Elysia Risso, 1818 (Heterobranchia: Sacoglossa) from the Caribbean region. , 2016, Zootaxa.

[25]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[26]  Jennifer H. Wisecaver,et al.  Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes. , 2016, Molecular biology and evolution.

[27]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[28]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[29]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[30]  W. Martin,et al.  Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis in Costasiella, with a focus on C. ocellifera (Gastropoda: Sacoglossa) , 2014 .

[31]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[32]  Peter Rodgers,et al.  eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses , 2014, PloS one.

[33]  T. Schäberle,et al.  Identification of sequestered chloroplasts in photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, Gastropoda) , 2014, Frontiers in Zoology.

[34]  Sarah R. Smith,et al.  The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing , 2014, PLoS biology.

[35]  D. Bhattacharya,et al.  Genome Analysis of Elysia chlorotica Egg DNA Provides No Evidence for Horizontal Gene Transfer into the Germ Line of This Kleptoplastic Mollusc , 2013, Molecular biology and evolution.

[36]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[37]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[38]  S. Bell,et al.  The kleptoplastic sea slug Elysia clarki prolongs photosynthesis by synthesizing chlorophyll a and b , 2012, Symbiosis.

[39]  S. Bell,et al.  The kleptoplastic sea slug Elysia clarki prolongs photosynthesis by synthesizing chlorophyll a and b , 2012, Symbiosis.

[40]  X. Fang,et al.  Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. , 2012, Molecular biology and evolution.

[41]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[42]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[43]  J. Schwartz,et al.  Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance , 2010 .

[44]  W. Martin,et al.  Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes , 2010, Molecular biology and evolution.

[45]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[46]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[47]  P. Krug,et al.  Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life , 2009, Frontiers in Zoology.

[48]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[49]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[50]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[51]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[52]  D. Bhattacharya,et al.  Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica , 2008, Proceedings of the National Academy of Sciences.

[53]  G. Johnsen,et al.  Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean , 2007 .

[54]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[55]  Anders Gorm Pedersen,et al.  RevTrans: multiple alignment of coding DNA from aligned amino acid sequences , 2003, Nucleic Acids Res..

[56]  R. Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant physiology.

[57]  C. Ireland,et al.  Photosynthetic Marine Mollusks: In vivo 14C Incorporation into Metabolites of the Sacoglossan Placobranchus ocellatus , 1979, Science.

[58]  M. Gutiérrez,et al.  Additions to the inventory of the sea slugs (Opisthobranchia and Sacoglossa) from Guadeloupe (Lesser Antilles, Caribbean Sea) , 2013 .

[59]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[60]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[61]  R. de Wachter,et al.  Extraction of high molecular weight DNA from molluscs. , 1993, Trends in genetics : TIG.