A semi-fertile interspecific hybrid of Brassica rapa and B. nigra and the cytogenetic analysis of its progeny

[1]  S. Sakamoto,et al.  Studies on unreduced gamete formation in hybrids between tetraploid wheats and Aegilops squarrosa L. , 2008 .

[2]  Zai-yun Li,et al.  Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis , 2007, Chromosome Research.

[3]  P. Hand,et al.  Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa , 2007, Theoretical and Applied Genetics.

[4]  Liwang Liu,et al.  Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat , 2006, Theoretical and Applied Genetics.

[5]  J. Meng,et al.  Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa , 2005, Theoretical and Applied Genetics.

[6]  A. Fleury,et al.  Gene dispersal from transgenic crops , 1996, Sexual Plant Reproduction.

[7]  X. Zhong,et al.  Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH) , 2005, Chromosome Research.

[8]  N. Sarla,et al.  Identification and overcoming barriers between Brassica rapa L. em. Metzg. and B. nigra (L.) Koch crosses for the resynthesis of B. juncea (L.) Czern. , 2004, Genetic Resources and Crop Evolution.

[9]  A. Pühler,et al.  What can bacterial genome research teach us about bacteria-plant interactions? , 2004, Current opinion in plant biology.

[10]  E. Jacobsen,et al.  Occurrence of numerically unreduced (2n) gametes in Alstroemeria interspecific hybrids and their significance for sexual polyploidisation , 2003, Euphytica.

[11]  N. Inomata Production of intergeneric hybrids between Brassica juncea and Diplotaxis virgata through ovary culture, and the cytology and crossability of their progenies , 2003, Euphytica.

[12]  M. Truco,et al.  Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution , 1996, Theoretical and Applied Genetics.

[13]  D. Struss,et al.  Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers , 1996, Theoretical and Applied Genetics.

[14]  P. M. Harney,et al.  The transfer of triazine resistance from Brassica napus L. to B. oleracea L. III. First backcross to parental species , 1988, Euphytica.

[15]  Maoteng Li,et al.  Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization , 2004, Chromosome Research.

[16]  W. Keller,et al.  Chromosome pairing in haploids of Brassica campestris , 2004, Theoretical and Applied Genetics.

[17]  S. Banga,et al.  Synthesis of intergeneric hybrids and establishment of genomic affinity between Diplotaxis catholica and crop Brassica species , 2003, Theoretical and Applied Genetics.

[18]  S. Banga,et al.  Alloplasmic male-sterile Brassica juncea with Enarthrocarpus lyratus cytoplasm and the introgression of gene(s) for fertility restoration from cytoplasm donor species , 2003, Theoretical and Applied Genetics.

[19]  G. King,et al.  Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. , 2002, Phytopathology.

[20]  S. Banga,et al.  Intergeneric hybridization between Erucastrum canariense and Brassica rapa. Genetic relatedness between EC and A genomes , 2002, Theoretical and Applied Genetics.

[21]  N. Inomata A cytogenetic study of the progenies of hybrids between Brassica napus and Brassica oleracea, Brassica bourgeaui, Brassica cretica and Brassica montana , 2002 .

[22]  J. Taylor,et al.  Sources and Origin of Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. , 2002, Phytopathology.

[23]  Li Zong-yun Genomic in situ hybridization (GISH) discriminates the A, B and C genomes in Brassica allotetraploid species , 2002 .

[24]  G. Pozmogova,et al.  RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent, Xanthomonas campestris pv. campestris (Pamm.) Dow. in Brassica rapa L. , 2000 .

[25]  C. Quirós,et al.  7 Genome structure and mapping , 1999 .

[26]  U. Lagercrantz Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. , 1998, Genetics.

[27]  P. This,et al.  Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus–B. nigra addition lines , 1996 .

[28]  J. Hunter,et al.  Brassica napus Sources of Resistance to Black Rot in Crucifers and Inheritance of Resistance , 1991 .

[29]  Charles B. Fenster I. GENE DISPERSAL , 1991 .

[30]  J. Hunter,et al.  Inheritance of Resistance in Cabbage Seedlings to Black Rot , 1987, HortScience.

[31]  A. Shelton,et al.  Evaluation of the potential of the flea beetle Phyllotreta cruciferae to transmit Xanthomonas campestris pv. campestris, causal agent of black rot of crucifers , 1985 .

[32]  Paul H. Williams,et al.  Black rot: a continuing threat to world crucifers. , 1980 .

[33]  S. McGavin Chromosome Pairing , 1973, Nature.

[34]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .