Prediction of acute myeloid leukaemia risk in healthy individuals

The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)4–8. Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.Individuals who are at high risk of developing acute myeloid leukaemia can be identified years before diagnosis using genetic information from blood samples.

Paolo Vineis | Zhen Zhao | Amos Tanay | Paul Brennan | Eran Segal | Salvatore Panico | Keiran Raine | Matthieu Foll | Ting Ting Wang | Mattias Johansson | Inigo Martincorena | Ran D Balicer | Nicholas J Wareham | Heiner Boeing | Scott V. Bratman | David Jones | Peter J Campbell | Trevor J. Pugh | Omer Weissbrod | Noam Barda | Trevor J Pugh | Elio Riboli | Roel Vermeulen | Stanley W. K. Ng | Sagi Abelson | Elli Papaemmanuil | Shabina Hayat | Kay-Tee Khaw | Liran I. Shlush | John D. McPherson | Moritz Gerstung | Claire Hardy | Mark D Minden | Carlo La Vecchia | Silvia Polidoro | Rui J. Costa | J. McPherson | E. Segal | E. Riboli | P. Campbell | C. Hardy | P. Vineis | R. Vermeulen | C. la Vecchia | A. Tanay | J. Dick | M. Minden | E. Papaemmanuil | David Jones | C. Latimer | K. Raine | T. Pugh | M. Gerstung | I. Martincorena | S. Behjati | N. Wareham | A. Trichopoulou | Karen Ng | L. Heisler | A. Krämer | K. Khaw | R. Balicer | O. Weissbrod | H. Boeing | M. Johansson | R. Kaaks | G. Vassiliou | S. Panico | R. Tumino | S. Polidoro | Lee Timms | P. Brennan | S. Bratman | M. Foll | J. McKay | G. Masala | Sagi Abelson | R. Travis | Y. Sundaravadanam | N. M. Cohen | L. Shlush | A. Karakatsani | Jenna Eagles | Faridah Mbabaali | Jessica K. Miller | Daniel M Pasternack | S. Sieri | J. Quirós | J. Huerta | P. Zuzarte | Jean C. Y. Wang | A. Barricarte | N. Sala | P. Beer | P. Krzyzanowski | S. Hayat | David Soave | P. Awadalla | Rudolf Kaaks | Antonia Trichopoulou | James McKay | Giovanna Masala | Rosario Tumino | G. Collord | E. Niemeyer | Noam Barda | R. Luben | Ting Ting Wang | Zhen Zhao | I. Cirlan | D. Hoult | A. Britten | K. Bowles | E. Salamanca-Fernández | Sabina Sieri | Aurelio Barricarte | Alwin Krämer | Yogi Sundaravadanam | John E. Dick | Lawrence Heisler | Karen Ng | Danielle Pasternack | Lee Timms | Sam Behjati | Calli Latimer | Grace Collord | J Ramón Quirós | Lawrence E. Heisler | Netta Mendelson Cohen | Stanley W.K. Ng | Elisabeth Niemeyer | Philip C. Zuzarte | Robert Luben | Iulia Cirlan | David Soave | Diana Hoult | Abigail Britten | Faridah Mbabaali | Jenna Eagles | Jessica Miller | Paul Krzyzanowski | Phillip Awadalla | Rui Costa | Philip Beer | Jean C.Y. Wang | Kristian M. Bowles | Anna Karakatsani | Elena Salamanca-Fernández | José M. Huerta | Ruth C. Travis | Núria Sala | George S. Vassiliou | Lawrence E Heisler | Calli Latimer | Lee E. Timms | Diana Hoult | Daniel M. Pasternack | J. Mckay | Abigail Britten | Claire W. Hardy | E. Riboli

[1]  N E Day,et al.  European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection , 2002, Public Health Nutrition.

[2]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[3]  L. Shlush Age-related clonal hematopoiesis. , 2018, Blood.

[4]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[5]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[6]  J. Chang-Claude,et al.  A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.

[7]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[8]  S W Duffy,et al.  Clinical Studies , 1877, Journal of Psychological Medicine and Mental Pathology (London, England : 1875).

[9]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[10]  Andrew J Vickers,et al.  Prediction models in cancer care , 2011, CA: a cancer journal for clinicians.

[11]  Suzanna E Lewis,et al.  JBrowse: a dynamic web platform for genome visualization and analysis , 2016, Genome Biology.

[12]  Matthew A. Cooper,et al.  Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice , 2017, Science.

[13]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[14]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[15]  Brendan F. Kohrn,et al.  Detecting ultralow-frequency mutations by Duplex Sequencing , 2014, Nature Protocols.

[16]  Keiran M Raine,et al.  cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing , 2015, Current protocols in bioinformatics.

[17]  Hui Yang,et al.  Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR , 2015, Nature Protocols.

[18]  Michael Lübbert,et al.  Acute myeloid leukemia: Epidemiology and etiology , 2006, Cancer.

[19]  D. Qian,et al.  A Review of Cancer Risk Prediction Models with Genetic Variants , 2014, Cancer informatics.

[20]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[21]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[22]  Christian Gilissen,et al.  Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life. , 2017, American journal of human genetics.

[23]  Inigo Martincorena,et al.  Precision oncology for acute myeloid leukemia using a knowledge bank approach , 2017, Nature Genetics.

[24]  Gary D Bader,et al.  Tracing the origins of relapse in acute myeloid leukaemia to stem cells , 2017, Nature.

[25]  E. Zeggini,et al.  Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis , 2015, Cell reports.

[26]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[27]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[28]  M. Dubé,et al.  DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. , 2017, Blood.

[29]  Lincoln D. Stein,et al.  Identification of pre-leukemic hematopoietic stem cells in acute leukemia , 2014, Nature.

[30]  S. Miyano,et al.  Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. , 2015, The New England journal of medicine.

[31]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[32]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[33]  M. Cabanero,et al.  Prognostic value of RDW in cancers: a systematic review and meta-analysis , 2016, Oncotarget.

[34]  P. Grambsch,et al.  Modeling Survival Data: Extending the Cox Model , 2000 .

[35]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[36]  Christopher A. Miller,et al.  The Role of TP53 Mutations in the Origin and Evolution of Therapy-Related AML , 2014, Nature.

[37]  Zixing Wang,et al.  A Bayesian Framework to Improve MicroRNA Target Prediction by Incorporating External Information , 2014, Cancer informatics.

[38]  Daniel B. Mark,et al.  TUTORIAL IN BIOSTATISTICS MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS , 1996 .

[39]  John O'Quigley,et al.  Explained randomness in proportional hazards models , 2005, Statistics in medicine.

[40]  G. Vassiliou,et al.  Aging as a driver of leukemogenesis , 2015, Science Translational Medicine.

[41]  R. Balicer,et al.  Digital health nation: Israel's global big data innovation hub , 2017, The Lancet.

[42]  P. Campbell,et al.  VAGrENT: Variation Annotation Generator , 2015, Current protocols in bioinformatics.

[43]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[44]  M. Gerstung,et al.  Reliable detection of subclonal single-nucleotide variants in tumour cell populations , 2012, Nature Communications.

[45]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[46]  D. Gilliland,et al.  Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. , 1996, Blood.

[47]  L. Bullinger,et al.  Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. , 2013, Blood.

[48]  Ran D Balicer,et al.  External validation and comparison of three prediction tools for risk of osteoporotic fractures using data from population based electronic health records: retrospective cohort study , 2017, British Medical Journal.

[49]  Ash A. Alizadeh,et al.  An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage , 2013, Nature Medicine.