A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis

We introduce a Nitsche-based formulation for the finite element discretization of the unilateral contact problem in linear elasticity. It features a weak treatment of the non-linear contact conditions through a consistent penalty term. Without any additional assumption on the contact set, we can prove theoretically its fully optimal convergence rate in the H1(Ω)-norm for linear finite elements in two dimensions, which is O(h^(1/2+ν)) when the solution lies in H^(3/2+ν)(Ω), 0 < ν ≤ 1/2. An interest of the formulation is that, conversely to Lagrange multiplier-based methods, no other unknown is introduced and no discrete inf-sup condition needs to be satisfied.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[3]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[4]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[5]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[8]  Patrick Hild,et al.  An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem , 2012, SIAM J. Numer. Anal..

[9]  Franz Chouly,et al.  On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.

[10]  G. Burton Sobolev Spaces , 2013 .

[11]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[12]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[13]  Peter Hansbo,et al.  Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .

[14]  Jaroslav Haslinger Finite element analysis for unilateral problems with obstacles on the boundary , 1977 .

[15]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[16]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[17]  Barbara I. Wohlmuth,et al.  Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact , 2012, SIAM J. Sci. Comput..

[18]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[19]  Faker Ben Belgacem,et al.  Quadratic finite element approximation of the Signorini problem , 2003, Math. Comput..

[20]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[21]  Barbara Wohlmuth,et al.  An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .

[22]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[23]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[24]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[25]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[26]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[27]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[28]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[29]  Helio J. C. Barbosa,et al.  Circumventing the Babuscka-Brezzi condition in mixed finite element approximations of elliptic variational inequalities , 1992 .

[30]  Yves Renard,et al.  A quasi-optimal a priori error estimate for the two-dimensional Signorini problem approximated by linear finite elements , 2012 .

[31]  Francesco Scarpini,et al.  Error estimates for the approximation of some unilateral problems , 1977 .

[32]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[33]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[34]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[35]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[36]  Noboru Kikuchi,et al.  Penalty/finite-element approximations of a class of unilateral problems in linear elasticity , 1981 .

[37]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[38]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .