Evaluation of a novel controlled-atmosphere flexible microtube plasma soft ionization source for the determination of BTEX in olive oil by headspace-gas chromatography/mass spectrometry.

[1]  Francisco Raposo,et al.  Challenges and strategies of matrix effects using chromatography-mass spectrometry: An overview from research versus regulatory viewpoints , 2020 .

[2]  J. Franzke,et al.  Study of Controlled Atmosphere FµTP Soft Ionization Mass Spectrometry for the detection of volatile organic compounds as potential biomarkers in saliva for cancer. , 2020, Analytical chemistry.

[3]  A. Smilde,et al.  Revealing hidden information in GC–MS spectra from isomeric drugs: Chemometrics based identification from 15 eV and 70 eV EI mass spectra , 2020, Forensic Chemistry.

[4]  F. David,et al.  Capillary gas chromatography-mass spectrometry: Current trends and perspectives , 2020 .

[5]  S. Hann,et al.  GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis , 2019, Analytical and Bioanalytical Chemistry.

[6]  J. Franzke,et al.  Analyte-Tailored Controlled Atmosphere Improves Dielectric Barrier Discharge Ionization Mass Spectrometry Performance. , 2019, Analytical chemistry.

[7]  Carolin Drees,et al.  Flexible Microtube Plasma (FμTP) as an Embedded Ionization Source for a Microchip Mass Spectrometer Interface. , 2018, Analytical chemistry.

[8]  G. Cicia,et al.  Extra-virgin olive oil: are consumers provided with the sensory quality they want? A hedonic price model with sensory attributes. , 2018, Journal of the science of food and agriculture.

[9]  J. Chen,et al.  Plasma-based ambient mass spectrometry: a step forward to practical applications , 2017 .

[10]  R. Zenobi,et al.  Atmospheric pressure soft ionization for gas chromatography with dielectric barrier discharge ionization-mass spectrometry (GC-DBDI-MS). , 2017, The Analyst.

[11]  J. Franzke,et al.  Dielectric barrier discharges applied for soft ionization and their mechanism. , 2017, Analytica chimica acta.

[12]  A. Molina-Díaz,et al.  Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing. , 2016, Food chemistry.

[13]  M. Hernández-Córdoba,et al.  Gas chromatography-mass spectrometry using microvial insert thermal desorption for the determination of BTEX in edible oils , 2016 .

[14]  Raquel Catarino Medeiros Vinci,et al.  Occurrence of volatile organic compounds in foods from the Belgian market and dietary exposure assessment , 2015 .

[15]  D. Barceló,et al.  Analytical quality assurance in veterinary drug residue analysis methods: matrix effects determination and monitoring for sulfonamides analysis. , 2015, Talanta.

[16]  C. Engelhard,et al.  Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis , 2014, Analytical and Bioanalytical Chemistry.

[17]  J. Namieśnik,et al.  The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices , 2013 .

[18]  A. Fernandez-Gutiérrez,et al.  Online spectral library for GC-atmospheric pressure chemical ionization-ToF MS. , 2013, Bioanalysis.

[19]  J. V. Sancho,et al.  Advantages of atmospheric pressure chemical ionization in gas chromatography tandem mass spectrometry: pyrethroid insecticides as a case study. , 2012, Analytical chemistry.

[20]  David B. Graves,et al.  Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species , 2012 .

[21]  Bienvenida Gilbert-López,et al.  Rapid determination of BTEXS in olives and olive oil by headspace-gas chromatography/mass spectrometry (HS-GC-MS). , 2010, Talanta.

[22]  A. Fernández-Alba,et al.  Development and validation of a LC–MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices , 2010, Analytical and bioanalytical chemistry.

[23]  H. Hübschmann Handbook of GC/MS Fundamentals and Applications , 2008 .

[24]  M. Valcárcel,et al.  Liquid-liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant. , 2007, Journal of chromatography. A.

[25]  Erin Chambers,et al.  Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[26]  N. Snow,et al.  Head-space analysis in modern gas chromatography , 2002 .

[27]  David S. Green,et al.  Chemical Kinetics Database and Predictive Schemes for Humid Air Plasma Chemistry. Part I: Positive Ion–Molecule Reactions , 2000 .

[28]  P. Kemper Gas phase ion—molecule reaction rate constants through 1986 , 1988 .

[29]  A. G. Harrison Chemical Ionization Mass Spectrometry , 1983 .

[30]  P. Kebarle,et al.  Thermodynamics and kinetics of the gas-phase reactions H3O+(H2O)n-1 + water = H3O+(H2O)n , 1982 .

[31]  F. Fehsenfeld,et al.  Ion—Molecule Reactions in an O2+–H2O System , 1971 .

[32]  F. Fehsenfeld,et al.  Ion—Molecule Reactions in NO+–H2O System , 1971 .

[33]  D. Harvey Mass Spectrometry: Overview ☆ , 2018 .

[34]  J. Silberring,et al.  Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. , 2016, Mass spectrometry reviews.

[35]  M. Valcárcel,et al.  Benzene, Toluene, Ethylbenzene, (o-, m- and p-) Xylenes and Styrene in Olive Oil , 2010 .

[36]  B. Freiser,et al.  Gas-phase nitrosation of benzene. Implications for solution electrophilic aromatic substitution reactions , 1980 .