The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy
暂无分享,去创建一个
[1] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[2] Denis Thérien,et al. Logspace and Logtime Leaf Languages , 1996, Inf. Comput..
[3] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[4] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[5] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[6] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[7] Pierluigi Crescenzi,et al. A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..
[8] Bernd Borchert,et al. On the Acceptance Power of Regular Languages , 1994, Theor. Comput. Sci..
[9] Heribert Vollmer,et al. The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.
[10] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[11] Heribert Vollmer,et al. Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..
[12] Klaus W. Wagner,et al. The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..
[13] Frank Stephan,et al. On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.
[14] Juris Hartmanis,et al. The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..
[15] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[16] Mustapha Arfi. Polynomial operations and hierarchies of concatenation (in French) , 1991 .
[17] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[18] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[19] Mustapha Arfi. Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..
[20] Mustapha Arfi. Polynomial Operations on Rational Languages , 1987, STACS.
[21] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[22] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[23] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[24] Thomas Schwentick,et al. On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[25] N. Vereshchagin. RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .
[26] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[27] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.