The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy

For some fixed alphabet A, a language L of A* is in the class L(1/2) of the Straubing-Therien hierarchy if and only if it can be expressed as a finite union of languages A*aA*bA*...A*cA*, where a,b,...,c are letters. The class L(1) is defined as the boolean closure of L(1/2). It is known that the classes L(1/2) and L(1) are decidable. We give a membership criterion for the single classes of the boolean hierarchy over L(1/2). From this criterion we can conclude that this boolean hierarchy is proper and that its classes are decidable.In finite model theory the latter implies the decidability of the classes of the boolean hierarchy over the class Sigma(1) of the FO(<)-logic. Moreover we prove a ``forbidden-pattern'' characterization of L(1) of the type: L is in L(1) if and only if a certain pattern does not appear in the transition graph of a deterministic finite automaton accepting L. We discuss complexity theoretical consequences of our results.

[1]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[2]  Denis Thérien,et al.  Logspace and Logtime Leaf Languages , 1996, Inf. Comput..

[3]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[4]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[5]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[6]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[7]  Pierluigi Crescenzi,et al.  A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..

[8]  Bernd Borchert,et al.  On the Acceptance Power of Regular Languages , 1994, Theor. Comput. Sci..

[9]  Heribert Vollmer,et al.  The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.

[10]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[11]  Heribert Vollmer,et al.  Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..

[12]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[13]  Frank Stephan,et al.  On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.

[14]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[15]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[16]  Mustapha Arfi Polynomial operations and hierarchies of concatenation (in French) , 1991 .

[17]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[18]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[19]  Mustapha Arfi Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..

[20]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[21]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[22]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[23]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[24]  Thomas Schwentick,et al.  On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[25]  N. Vereshchagin RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .

[26]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[27]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.