Nonlinear Fractional Schrödinger Equations coupled by power--type nonlinearities

In this work we study the following class of systems of coupled nonlinear fractional nonlinear Schrödinger equations, { (−∆)u1 + λ1u1 = μ1|u1|u1 + β|u2||u1|u1 in R , (−∆)u2 + λ2u2 = μ2|u2|u2 + β|u1||u2|u2 in R , where u1, u2 ∈ W (R ), with N = 1, 2, 3; λj , μj > 0, j = 1, 2, β ∈ R, p ≥ 2 and p− 1 2p N < s < 1. Precisely, we prove the existence of positive radial bound and ground state solutions provided the parameters β, p, λj , μj , (j = 1, 2) satisfy appropriate conditions. We also study the previous system with m-equations, (−∆)uj + λjuj = μj |uj |uj + m ∑ k=1 k 6=j βjk|uk||uj |uj , uj ∈W (R ); j = 1, . . . ,m where λj , μj > 0 for j = 1, . . . ,m ≥ 3, the coupling parameters βjk = βkj ∈ R for j, k = 1, . . . ,m, j 6= k. For this system we prove similar results as for m = 2, depending on the values of the parameters βjk, p, λj , μj , (for j, k = 1, . . . ,m, j 6= k).

[1]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[2]  Thomas,et al.  NOTE ON GROUND STATES OF NONLINEAR SCHRODINGER SYSTEMS , 2006 .

[3]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[4]  Rupert L. Frank,et al.  Uniqueness and Nondegeneracy of Ground States for (−Δ)^sQ+Q−Q^(α+1)=0 in R , 2015 .

[5]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[6]  Juncheng Wei,et al.  Asymptotic behaviour of solutions of planar elliptic systems with strong competition , 2008 .

[7]  Shu-Ming Chang,et al.  Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates , 2004 .

[8]  C. Stuart Uniqueness and stability of ground states for some nonlinear Schrödinger equations , 2006 .

[9]  K. Hizanidis,et al.  Normal and Anomalous Diffusion: A Tutorial , 2008, 0805.0419.

[10]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[11]  E. Colorado Positive solutions to some systems of coupled nonlinear Schr\"odinger equations , 2014, 1406.6237.

[12]  E. N. Dancer,et al.  A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system , 2010 .

[13]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[14]  B. Pellacci,et al.  Positive solutions for a weakly coupled nonlinear Schrödinger system , 2006 .

[15]  S. Terracini,et al.  Multipulse Phases in k-Mixtures of Bose–Einstein Condensates , 2008, 0807.1979.

[16]  D. G. Figueiredo,et al.  Solitary waves for some nonlinear Schrödinger systems , 2008 .

[17]  T. Bartsch,et al.  Bound states for a coupled Schrödinger system , 2007 .

[18]  Juncheng Wei,et al.  Ground states of nonlinear Schrödinger systems with mixed couplings , 2019, Journal de Mathématiques Pures et Appliquées.

[19]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[20]  Coupled nonlinear Schrödinger systems with potentials , 2005, math/0506010.

[21]  C. Menyuk Nonlinear pulse propagation in birefringent optical fibers , 1987 .

[22]  Ground States for a Nonlinear Schrödinger System with Sublinear Coupling Terms , 2015, 1504.04655.

[23]  W. Zou,et al.  An optimal constant for the existence of least energy solutions of a coupled Schrödinger system , 2013 .

[24]  R. Cipolatti,et al.  Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations , 2000 .

[25]  Juncheng Wei,et al.  Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction , 2008 .

[26]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[28]  Zhaoli Liu,et al.  Ground States and Bound States of a Nonlinear Schrödinger System , 2010 .

[29]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[30]  Tobias Weth,et al.  Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations , 2008 .

[31]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[32]  Vicentiu D. Rădulescu,et al.  Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems , 2013 .

[33]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[34]  Antonio Ambrosetti,et al.  Bound and ground states of coupled nonlinear Schrödinger equations , 2006 .

[35]  R. Wolpert Lévy Processes , 2000 .

[36]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[37]  Enrico Valdinoci,et al.  Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian , 2012, 1202.0576.

[38]  Tai-Chia Lin,et al.  Ground State of N Coupled Nonlinear Schrödinger Equations in Rn,n≤3 , 2005 .

[39]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[40]  R. Seiringer,et al.  Non-linear ground state representations and sharp Hardy inequalities , 2008, 0803.0503.

[41]  N. Fusco,et al.  A quantitative isoperimetric inequality for fractional perimeters , 2010, 1012.0051.

[42]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[43]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[44]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[45]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[46]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.