Finite-difference schemes for nonlinear wave equation that inherit energy conservation property
暂无分享,去创建一个
[1] D. Greenspan. Conservative numerical methods for ẍ = f(x) , 1984 .
[2] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Athanassios G. Bratsos,et al. A family of parametric finite-difference methods for the solution of the sine-Gordon equation , 1998, Appl. Math. Comput..
[5] A. E. Kudryavtsev,et al. Solitonlike solutions for a Higgs scalar field , 1975 .
[6] J. Eilbeck. Numerical Studies of Solitons , 1978 .
[7] D. Duncan,et al. SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .
[8] In Jung Lee,et al. Numerical solution for nonlinear klein-gordon equation by bollocation method with respect to spectral method , 1995 .
[9] Mark J. Ablowitz,et al. On the Numerical Solution of the Sine-Gordon Equation , 1996 .
[10] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[11] Mark J. Ablowitz,et al. Numerical simulation of quasi-periodic solutions of the sine-Gordon equation , 1995 .
[12] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[13] Mark J. Ablowitz,et al. Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .
[14] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[15] Z. Fei,et al. Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .
[16] G. Carrier,et al. On the non-linear vibration problem of the elastic string , 1945 .
[17] L. Vázquez,et al. Numerical solution of the sine-Gordon equation , 1986 .
[18] A numerical energy conserving method for the DNLS equation , 1992 .
[19] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .
[20] W. G. Price,et al. Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .
[21] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[22] Daisuke Furihata,et al. A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.
[23] J. Gibbon,et al. Solitons and Nonlinear Wave Equations , 1982 .
[24] Jesús María Sanz-Serna,et al. An explicit finite-difference scheme with exact conservation properties , 1982 .
[25] D. B. Duncan,et al. Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .
[26] J. Perring,et al. A Model unified field equation , 1962 .
[27] L. Vu-Quoc,et al. INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .