Finite-difference schemes for nonlinear wave equation that inherit energy conservation property

Abstract We propose two general finite-difference schemes that inherit energy conservation property from nonlinear wave equations, such as the nonlinear Klein–Gordon equation (NLKGE). One of proposed schemes is implicit and another is explicit. Many studies exist on FDSs that inherit energy conservation property from NLKGE and we can derive all of their schemes from the proposed general schemes in this paper. The most important feature of our procedure is a rigorous discretization of variational derivatives using summation by parts, which implies that the inherited properties are satisfied exactly. Because of this the derived schemes are expected to be numerically stable and yield solutions converging to PDE solutions. We make new FDSs for Fermi–Pasta–Ulam equation, string vibration equation, Shimoji–Kawai equation (SKE) and Ebihara equation and verify numerically the inheritance of the energy conservation property for NLKGE and SKE.

[1]  D. Greenspan Conservative numerical methods for ẍ = f(x) , 1984 .

[2]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Athanassios G. Bratsos,et al.  A family of parametric finite-difference methods for the solution of the sine-Gordon equation , 1998, Appl. Math. Comput..

[5]  A. E. Kudryavtsev,et al.  Solitonlike solutions for a Higgs scalar field , 1975 .

[6]  J. Eilbeck Numerical Studies of Solitons , 1978 .

[7]  D. Duncan,et al.  SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .

[8]  In Jung Lee,et al.  Numerical solution for nonlinear klein-gordon equation by bollocation method with respect to spectral method , 1995 .

[9]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[10]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[11]  Mark J. Ablowitz,et al.  Numerical simulation of quasi-periodic solutions of the sine-Gordon equation , 1995 .

[12]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[13]  Mark J. Ablowitz,et al.  Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .

[14]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[15]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[16]  G. Carrier,et al.  On the non-linear vibration problem of the elastic string , 1945 .

[17]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[18]  A numerical energy conserving method for the DNLS equation , 1992 .

[19]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[20]  W. G. Price,et al.  Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .

[21]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[22]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[23]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[24]  Jesús María Sanz-Serna,et al.  An explicit finite-difference scheme with exact conservation properties , 1982 .

[25]  D. B. Duncan,et al.  Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .

[26]  J. Perring,et al.  A Model unified field equation , 1962 .

[27]  L. Vu-Quoc,et al.  INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .