Chaotic synchronization of coupled ergodic maps.

With few exceptions, studies of chaotic synchronization have focused on dissipative chaos. Though less well known, chaotic systems that lack dissipation may also synchronize. Motivated by an application in communication systems, we couple a family of ergodic maps on the N-torus and study the global stability of the synchronous state. While most trajectories synchronize at some time, there is a measure zero set that never synchronizes. We give explicit examples of these asynchronous orbits in dimensions two and four. On more typical trajectories, the synchronization error reaches arbitrarily small values and, in practice, converges. In dimension two we derive bounds on the average synchronization time for trajectories resulting from randomly chosen initial conditions. Numerical experiments suggest similar bounds exist in higher dimensions as well. Adding noise to the coupling signal destroys the invariance of the synchronous state and causes typical trajectories to desynchronize. We propose a modification of the standard coupling scheme that corrects this problem resulting in robust synchronization in the presence of noise.

[1]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[2]  J. C. G. Lesurf,et al.  Chaos in harness , 1993, Nature.

[3]  U. Parlitz,et al.  Robust communication based on chaotic spreading sequences , 1994 .

[4]  Richard L. Kautz,et al.  Using chaos to generate white noise , 1999 .

[5]  R. Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. Part II. Some theoretical performance bounds , 1998 .

[6]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[7]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[8]  David S. Broomhead,et al.  Codes for spread spectrum applications generated using chaotic dynamical systems , 1999 .

[9]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[10]  Kevin M. Short,et al.  UNMASKING A HYPERCHAOTIC COMMUNICATION SCHEME , 1998 .

[11]  Parlitz,et al.  Encoding messages using chaotic synchronization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Lai-Sang Young,et al.  On the spectra of randomly perturbed expanding maps , 1993 .

[13]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[14]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[15]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[16]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[17]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization , 1998 .

[18]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[19]  Kevin M. Short,et al.  UNMASKING A MODULATED CHAOTIC COMMUNICATIONS SCHEME , 1996 .

[20]  C. D. McGillem,et al.  Modern Communications And Spread Spectrum , 1985 .

[21]  P. Grassberger,et al.  Symmetry breaking bifurcation for coupled chaotic attractors , 1991 .

[22]  Kevin M. Short,et al.  Steps Toward Unmasking Secure Communications , 1994 .

[23]  Kevin M. Short,et al.  Signal Extraction from Chaotic Communications , 1997 .

[24]  T. Carroll,et al.  VOLUME-PRESERVING AND VOLUME-EXPANDING SYNCHRONIZED CHAOTIC SYSTEMS , 1997 .

[25]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[26]  Chun-Mei Yang,et al.  Cryptanalyzing chaotic secure communications using return maps , 1998 .

[27]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[28]  Lieberman,et al.  Synchronization of regular and chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  T. Carroll,et al.  Chaotic synchronization in Hamiltonian systems. , 1994, Chaos.

[30]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[31]  Average exit time for volume-preserving maps. , 1996, Chaos.

[32]  William C. Y. Chan,et al.  Study of bifurcations in current-programmed DC/DC boost converters: from quasiperiodicity to period-doubling , 1997 .

[33]  I. Amato Coming in loud and clear-via chaos. , 1993, Science.

[34]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[35]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[36]  J. Milnor On the concept of attractor , 1985 .

[37]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[38]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[39]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[40]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[41]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .