Using the object modeling system for hydrological model development and application
暂无分享,去创建一个
Abstract. State of the art challenges in sustainable management of water resources have created demand for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which have been de-veloped to fit these needs are often constrained to specific scales or purposes and thus can not be easily adapted to meet different challenges. As a solution for flexible and modularised model development and application, the Object Modeling System (OMS) has been developed in a joint approach by the USDA-ARS, GPSRU (Fort Collins, CO, USA), USGS (Denver, CO, USA), and the FSU (Jena, Germany). The OMS provides a modern modelling framework which allows the implementation of single process components to be compiled and applied as custom tailored model assemblies. This paper describes basic principles of the OMS and its main components and explains in more detail how the problems during coupling of models or model components are solved inside the system. It highlights the integration of different spatial and temporal scales by their representation as spatial modelling entities embedded into time compound components. As an exam-ple the implementation of the hydrological model J2000 is discussed.
[1] Other. Directive 2000/60/EC of the European Parliament and of The Council of 23 October 2000 establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive) , 2000 .
[2] Peter Krause,et al. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model , 2002 .