A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry

[1]  H. Wiemhöfer,et al.  Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry , 2013 .

[2]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[3]  M. Yoshikawa,et al.  Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-Ion batteries , 2011 .

[4]  H. Tran,et al.  LiMn2O4 Spinel/LiNi0.8Co0.15Al0.05O2 Blends as Cathode Materials for Lithium-Ion Batteries , 2011 .

[5]  Qingsong Wang,et al.  The effect of mass ratio of electrolyte and electrodes on the thermal stabilities of electrodes used in lithium ion battery , 2011 .

[6]  B. Lucht,et al.  Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries , 2009 .

[7]  Xiao‐Qing Yang,et al.  Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD , 2009 .

[8]  S. Moon,et al.  Thermal analysis of LixCoO2 cathode material of lithium ion battery , 2009 .

[9]  Tsutomu Ohzuku,et al.  An overview of positive-electrode materials for advanced lithium-ion batteries , 2007 .

[10]  P. Biensan,et al.  Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study , 2007 .

[11]  Junwei Jiang,et al.  The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte , 2007 .

[12]  Qingsong Wang,et al.  Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries , 2006 .

[13]  H. Kageyama,et al.  Investigation on lithium de-intercalation mechanism for Li1−yNi1/3Mn1/3Co1/3O2 , 2005 .

[14]  H. Maleki,et al.  Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge , 2004 .

[15]  E. Roth,et al.  DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders , 2004 .

[16]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[17]  D. Aurbach,et al.  The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions , 2003 .

[18]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[19]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[20]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[21]  D. D. MacNeil,et al.  The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: II. LiMn2 O 4 charged to 4.2 V , 2001 .

[22]  H. Maleki,et al.  Thermal Stability Studies of Binder Materials in Anodes for Lithium‐Ion Batteries , 2000 .

[23]  S. Tobishima Lithium Ion Cell Safety , 2000 .

[24]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[25]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[26]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[27]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[28]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .