On the boundedness of solutions to the Lorenz-like family of chaotic systems

This paper deals with a class of three-dimensional autonomous nonlinear systems which have potential applications in secure communications, and investigates the localization problem of compact invariant sets of a class of Lorenz-like chaotic systems which contain T system with the help of iterative theorem and Lyapunov function theorem. Since the Lorenz-like chaotic system does not have y in the second equation, the approach used to the Lorenz system cannot be applied to the Lorenz-like chaotic system. We overcome this difficulty by introducing a cross term and get an interesting result, which includes the most interesting case of the chaotic attractor of the Lorenz-like systems. Furthermore, the results obtained in this paper are applied to study complete chaos synchronization. Finally, numerical simulations show the effectiveness of the proposed scheme.

[1]  Fu Yuli,et al.  On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization , 2005 .

[2]  Da Lin,et al.  Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems , 2010, Neurocomputing.

[3]  Fuchen Zhang,et al.  Bounds for a new chaotic system and its application in chaos synchronization , 2011 .

[4]  Qigui Yang,et al.  Dynamics of a new Lorenz-like chaotic system , 2010 .

[5]  Konstantin E. Starkov,et al.  Bounding a domain containing all compact invariant sets of the permanent-magnet motor system , 2009 .

[6]  Pei Yu,et al.  New Estimations for Globally Attractive and Positive Invariant Set of the Family of the Lorenz Systems , 2006, Int. J. Bifurc. Chaos.

[7]  Xingyuan Wang,et al.  Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems , 2010 .

[8]  Damei Li,et al.  Bounds of the hyper-chaotic Lorenz–Stenflo system , 2010 .

[9]  Da Lin,et al.  Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation , 2010, Fuzzy Sets Syst..

[10]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[12]  Gennady A. Leonov,et al.  Attraktoreingrenzung für nichtlineare Systeme , 1987 .

[13]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[14]  K. Starkov Bounds for a domain containing all compact invariant sets of the system describing the laser–plasma interaction , 2009 .

[15]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[16]  Alexander P. Krishchenko,et al.  Localization analysis of compact invariant sets of multi-dimensional nonlinear systems and symmetrical prolongations , 2010 .

[17]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[18]  Pei Yu,et al.  On the study of globally exponentially attractive set of a general chaotic system , 2008 .

[19]  Guanrong Chen,et al.  On the boundedness of solutions of the Chen system , 2007 .

[20]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[21]  Ljupco Kocarev,et al.  Lie Derivatives and Dynamical Systems , 1998 .

[22]  Qinsheng Bi,et al.  Hopf bifurcation analysis in the T system , 2010 .

[23]  Yonglu Shu,et al.  Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization , 2009 .

[24]  Peter Swinnerton-Dyer,et al.  Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .

[25]  Yeong-Jeu Sun,et al.  Solution bounds of generalized Lorenz chaotic systems , 2009 .

[26]  Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability , 2007 .

[27]  Da Lin,et al.  CONTROLLING THE UNCERTAIN MULTI-SCROLL CRITICAL CHAOTIC SYSTEM WITH INPUT NONLINEAR USING SLIDING MODE CONTROL , 2009 .

[28]  Jinhu Lü,et al.  Coexistence of anti-phase and complete synchronization in the generalized Lorenz system , 2010 .

[29]  Jiangang Zhang,et al.  Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .

[30]  Konstantin E. Starkov,et al.  Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator , 2009 .

[31]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[32]  O. Rössler An equation for continuous chaos , 1976 .

[33]  Guanrong Chen,et al.  Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system , 2006 .

[34]  Xiaoqun Wu,et al.  Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system , 2009 .

[35]  Xingyuan Wang,et al.  Chaos synchronization basing on symbolic dynamics with nongenerating partition. , 2009, Chaos.

[36]  Shengli Xie,et al.  Study on the Global Property of the Smooth Chua's System , 2006, Int. J. Bifurc. Chaos.

[37]  Alexander P. Krishchenko,et al.  Localization of compact invariant sets of the Lorenz system , 2006 .