Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

A combination of quantitative live imaging of fluorescently tagged actin, N-cadherin, and myosin in primary neurons and computer modeling of actin dynamics shows that a clutch-like mechanism connecting N-cadherin–based transsynaptic adhesions and the actin/myosin network drives the stabilization of dendritic filopodia into spines.

[1]  Daniel Choquet,et al.  Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion , 2014, The EMBO journal.

[2]  W. Witke,et al.  Small, smaller… dendritic spine , 2014, The EMBO journal.

[3]  P. Hotulainen,et al.  Myosin IIb controls actin dynamics underlying the dendritic spine maturation , 2014, Molecular and Cellular Neuroscience.

[4]  Christelle Breillat,et al.  Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation , 2013, Nature Communications.

[5]  R. Weinberg,et al.  Disruption of Arp2/3 Results in Asymmetric Structural Plasticity of Dendritic Spines and Progressive Synaptic and Behavioral Abnormalities , 2013, The Journal of Neuroscience.

[6]  Guillermo A. Gomez,et al.  A WAVE2–Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens , 2012, Molecular biology of the cell.

[7]  Sulagna Das,et al.  Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron , 2012, Molecular biology of the cell.

[8]  Manuel Théry,et al.  Actin Network Architecture Can Determine Myosin Motor Activity , 2012, Science.

[9]  O. Thoumine,et al.  Unified quantitative model of AMPA receptor trafficking at synapses , 2012, Proceedings of the National Academy of Sciences.

[10]  M. Dahan,et al.  Wavelet analysis for single molecule localization microscopy. , 2012, Optics express.

[11]  E. Ullian,et al.  Afadin, A Ras/Rap Effector That Controls Cadherin Function, Promotes Spine and Excitatory Synapse Density in the Hippocampus , 2012, The Journal of Neuroscience.

[12]  J. Hardin,et al.  The secret life of α-catenin: Moonlighting in morphogenesis , 2011, The Journal of cell biology.

[13]  O. Thoumine,et al.  Neurexin-Neuroligin Adhesions Capture Surface-Diffusing AMPA Receptors through PSD-95 Scaffolds , 2011, The Journal of Neuroscience.

[14]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[15]  M. Vicente-Manzanares,et al.  Myosin IIB Activity and Phosphorylation Status Determines Dendritic Spine and Post-Synaptic Density Morphology , 2011, PloS one.

[16]  R. Huganir,et al.  Regulation of Synapse Structure and Function by Distinct Myosin II Motors , 2011, The Journal of Neuroscience.

[17]  Christophe Zimmer,et al.  Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe , 2011, PloS one.

[18]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[19]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[20]  Gaudenz Danuser,et al.  Myosin II contributes to cell-scale actin network treadmilling via network disassembly , 2010, Nature.

[21]  D. Muller,et al.  N-cadherin mediates plasticity-induced long-term spine stabilization , 2010, The Journal of cell biology.

[22]  T. Svitkina,et al.  Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis , 2010, Molecular biology of the cell.

[23]  A. Inutsuka,et al.  Calyculin A-induced neurite retraction is critically dependent on actomyosin activation but not on polymerization state of microtubules. , 2009, Biochemical and biophysical research communications.

[24]  Ji Yu,et al.  Investigating Sub-Spine Actin Dynamics in Rat Hippocampal Neurons with Super-Resolution Optical Imaging , 2009, PloS one.

[25]  O. Thoumine,et al.  Multi-level molecular clutches in motile cell processes. , 2009, Trends in cell biology.

[26]  E. Ullian,et al.  δ-Catenin Regulates Spine and Synapse Morphogenesis and Function in Hippocampal Neurons during Development , 2009, The Journal of Neuroscience.

[27]  Michael D. Ehlers,et al.  Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity , 2008, Cell.

[28]  Jyothi Arikkath,et al.  Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity , 2008, Trends in Neurosciences.

[29]  R. Huganir,et al.  Coordination of Synaptic Adhesion with Dendritic Spine Remodeling by AF-6 and Kalirin-7 , 2008, The Journal of Neuroscience.

[30]  Cécile Boscher,et al.  A Molecular Clutch between the Actin Flow and N-Cadherin Adhesions Drives Growth Cone Migration , 2008, The Journal of Neuroscience.

[31]  Y. Goda,et al.  Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy , 2008, Nature Reviews Neuroscience.

[32]  Jun Noguchi,et al.  The Subspine Organization of Actin Fibers Regulates the Structure and Plasticity of Dendritic Spines , 2008, Neuron.

[33]  Daniel Choquet,et al.  Nucleation and growth of cadherin adhesions. , 2007, Experimental cell research.

[34]  E. Schuman,et al.  Effects of N-Cadherin Disruption on Spine Morphological Dynamics , 2007, Frontiers in cellular neuroscience.

[35]  Y. Goda,et al.  β-Catenin regulates excitatory postsynaptic strength at hippocampal synapses , 2007, Proceedings of the National Academy of Sciences.

[36]  D. Perrais,et al.  Fast Regulation of Axonal Growth Cone Motility by Electrical Activity , 2007, The Journal of Neuroscience.

[37]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[38]  L. Reichardt,et al.  p120 Catenin Regulates Dendritic Spine and Synapse Development through Rho-Family GTPases and Cadherins , 2006, Neuron.

[39]  Dylan T Burnette,et al.  Myosin II functions in actin-bundle turnover in neuronal growth cones , 2006, Nature Cell Biology.

[40]  C. Dotti,et al.  Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor–dependent manner , 2006, The Journal of cell biology.

[41]  R. Weinberg,et al.  A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function , 2006, Neuron.

[42]  Daniel Choquet,et al.  Regulation of N-cadherin dynamics at neuronal contacts by ligand binding and cytoskeletal coupling. , 2005, Molecular biology of the cell.

[43]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[44]  Kentaro Abe,et al.  Synaptic contact dynamics controlled by cadherin and catenins. , 2005, Trends in cell biology.

[45]  D. Webb,et al.  A GIT1/PIX/Rac/PAK Signaling Module Regulates Spine Morphogenesis and Synapse Formation through MLC , 2005, The Journal of Neuroscience.

[46]  Y. Hiraoka,et al.  Cadherin activity is required for activity-induced spine remodeling , 2004, The Journal of cell biology.

[47]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[48]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[49]  J. Sellers,et al.  Mechanism of Blebbistatin Inhibition of Myosin II* , 2004, Journal of Biological Chemistry.

[50]  J. Kolega,et al.  Phototoxicity and photoinactivation of blebbistatin in UV and visible light. , 2004, Biochemical and biophysical research communications.

[51]  Rafael Yuste,et al.  Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility , 2004, Molecular and Cellular Neuroscience.

[52]  P. Vallotton,et al.  Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[54]  Dylan T Burnette,et al.  Rho-Dependent Contractile Responses in the Neuronal Growth Cone Are Independent of Classical Peripheral Retrograde Actin Flow , 2003, Neuron.

[55]  A. Matus,et al.  Activity-induced targeting of profilin and stabilization of dendritic spine morphology , 2003, Nature Neuroscience.

[56]  E. Schuman,et al.  Cadherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[58]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[59]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Choquet,et al.  Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton , 2002, The Journal of cell biology.

[61]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[62]  Michael J. Sailor,et al.  Remodeling of Synaptic Actin Induced by Photoconductive Stimulation , 2001, Cell.

[63]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[64]  P. Forscher,et al.  Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. , 2000, Journal of neurobiology.

[65]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[66]  T. Mitchison,et al.  Regulated Actin Cytoskeleton Assembly at Filopodium Tips Controls Their Extension and Retraction , 1999, The Journal of cell biology.

[67]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[68]  I. Weiler,et al.  Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  C. Holt,et al.  Cadherin Function Is Required for Axon Outgrowth in Retinal Ganglion Cells In Vivo , 1996, Neuron.

[70]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[71]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[72]  G. Edelman,et al.  cDNAs of cell adhesion molecules of different specificity induce changes in cell shape and border formation in cultured S180 cells , 1990, The Journal of cell biology.

[73]  M. Kirschner,et al.  Cytoskeletal dynamics and nerve growth , 1988, Neuron.

[74]  E. Korn,et al.  Interaction of cytochalasin D with actin filaments in the presence of ADP and ATP. , 1986, The Journal of biological chemistry.

[75]  M. Takeichi,et al.  Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. , 2004, Nature neuroscience.

[76]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[77]  E. Schuman,et al.  Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. , 2002, Neuron.