Modified projective synchronization of unknown chaotic dissipative gyroscope systems via Gaussian radial basis adaptive variable structure control

This paper proposes the modified projective synchronization method for unknown chaotic dissipative gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the dissipative gyroscope system, the system exhibits chaotic motions. As chaotic signals are usually broadband and noise-like, synchronized chaotic systems can be used as cipher generators for secure communication. Obviously the importance of obtaining these objectives is specified when the dynamics of the gyroscope system are unknown. In this paper, using the neural variable structure control technique, control laws are established, which guarantees the modified projective synchronization of an unknown chaotic dissipative gyroscope system. Switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. In the neural variable structure control, Gaussian radial basis functions are utilized online to estimate the system dynamic functions. Also, the adaptation laws of the online estimators are derived in the sense of Lyapunov function. Thus, the unknown chaotic gyroscope system can be guaranteed to be asymptotically stable. Also, the synchronization objectives have been achieved. The proposed method allows us to arbitrarily adjust the desired scaling by controlling the slave system. It is not necessary to calculate the Lyapunov exponents and the eigenvalues of the Jacobian matrix, which makes it simple and convenient. Also, it is a systematic procedure for modified projective synchronization of chaotic systems and it can be applied to a variety of chaotic systems no matter whether it contains external excitation or not. The designed control system is robust versus model uncertainty. Numerical simulations are presented to verify the proposed synchronization method.

[1]  Ying-Cheng Lai,et al.  ANTIPHASE SYNCHRONISM IN CHAOTIC SYSTEMS , 1998 .

[2]  S.A. Mohseni,et al.  Fuzzy neural networks controller for a chaotic nonlinear gyro using sliding-mode surfaces , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[3]  J. Yan,et al.  Robust synchronization of unified chaotic systems via sliding mode control , 2007 .

[4]  Her-Terng Yau,et al.  Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control , 2008 .

[5]  Daolin Xu,et al.  Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems , 2005 .

[6]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[7]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[8]  Guoliang Cai,et al.  Chaos Synchronization of a New Chaotic System via Nonlinear Control , 2007 .

[9]  J.-K. Lee,et al.  Chaos synchronization and parameter identification for gyroscope system , 2005, Appl. Math. Comput..

[10]  Xikui Ma,et al.  Synchronization of chaotic systems with parametric uncertainty using active sliding mode control , 2004 .

[11]  Zheng-Ming Ge Chaos control for rigid body systems , 2002 .

[12]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[13]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[14]  Her-Terng Yau,et al.  Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs , 2008 .

[15]  H. Salarieh,et al.  Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control , 2008 .

[16]  M. Nekoui,et al.  Chaos synchronization of uncertain nonlinear gyros via hybrid control , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[17]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[18]  Jinghua Xiao,et al.  Chaos Synchronization in Coupled Chaotic Oscillators with Multiple Positive Lyapunov Exponents , 1998 .

[19]  Guilin Wen,et al.  Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension , 2004 .

[20]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[21]  J. Yan,et al.  Robust synchronization of chaotic systems via adaptive sliding mode control , 2006 .

[22]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[23]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[24]  Mohammad Teshnehlab,et al.  Generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control , 2009 .

[25]  Her-Terng Yau,et al.  Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping ☆ , 2007 .

[26]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[27]  Mohammad Haeri,et al.  Synchronizing different chaotic systems using active sliding mode control , 2007 .

[28]  Zheng-Ming Ge,et al.  Bifurcations and chaos of a two-degree-of-freedom dissipative gyroscope , 2005 .

[29]  Jian-ping Yan,et al.  Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system , 2006 .

[30]  R. V. Dooren,et al.  Comments on “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping” , 2003 .

[31]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[32]  陈关荣,et al.  A Chaotic Communication Scheme Based on Generalized Synchronization and Hash Functions , 2004 .

[33]  Uchechukwu E. Vincent,et al.  Control and Synchronization of Chaos in Nonlinear Gyros via Backstepping Design , 2008 .

[34]  H. Yau Generalized projective chaos synchronization of gyroscope systems subjected to dead-zone nonlinear inputs , 2008 .

[35]  Comment on: “Synchronization of two chaotic nonlinear gyros using active control” [Phys. Lett. A 343 (2005) 153] , 2008 .

[36]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[37]  Jun-Juh Yan,et al.  Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters , 2006 .

[38]  Aria Alasty,et al.  Synchronization of chaotic systems with parameter uncertainties via variable structure control , 2006 .

[39]  Jun-Juh Yan,et al.  Controlling chaos of a chaotic nonlinear gyro using variable structure control , 2007 .

[40]  Teh-Lu Liao,et al.  Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input , 2008 .

[41]  E. M. Shahverdiev,et al.  Synchronization in systems with multiple time delays. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[43]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[44]  Gualberto Solís-Perales,et al.  A chaos-based communication scheme via robust asymptotic feedback , 2001 .

[45]  U. E. Vincent,et al.  Generalized Adaptive Backstepping Synchronization for Non-identical Parametrically Excited Systems , 2009 .

[46]  Shaocheng Tong,et al.  Adaptive Fuzzy Output Tracking Control of MIMO Nonlinear Uncertain Systems , 2007, IEEE Transactions on Fuzzy Systems.

[47]  Chen Guan-Rong,et al.  A Chaotic Communication Scheme Based on Generalized Synchronization and Hash Functions , 2004 .

[48]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.